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1 What’s new? 
 

Release 2.18 introduced Nucleotide Conformers – NtC’s, which were implemented in MMB 

by Emanuel Peter, Jiri Cerny, and Bohdan Schneider. 

I wrote multiple extensions to our density map fitting code. MMB can now read triclinic 

density maps.  

Michal Tykac of the Cerny Lab modernized the structure file reading and writing, so now it 

can work with the mmCIF format. He also enabled MRC density map reading.  

Release 3.14 includes significant code contributions from Michal Maly, also of the Cerny Lab. 

Michal solved numerous code hygiene issues.     

 

 

 

 

 

 

 

 

For any published work which uses MMB, please cite one or more of the following: 

 

Dourado, D. & Flores, S. C. (2014). A multiscale approach to predicting affinity changes in 

protein-protein interfaces. Proteins. doi:10.1002/prot.24634 

Turning limited experimental information intio 3D models of RNA, by Samuel C Flores and 

Russ B Altman, RNA 16(9):1769-78 (2010). 

Predicting RNA structure by multiple template homology modeling, by Samuel C. Flores, Yaqi 

Wan, Rick Russell, and Russ B. Altman (2010) Proceedings of the Pacific Symposium on 

Biocomputing. 
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Fast flexible modeling of RNA structure using internal coordinates, by Samuel C. Flores, 

Michael Sherman, Chris Bruns, Peter Eastman,  Russ Altman (2011) Transactions in 

Computational Biology and Bioinformatics 8(5): 1247-57. 

http://xray.bmc.uu.se/flores/Papers_files/RNABuilder-Engineering-TCBB-reprint.pdf
http://xray.bmc.uu.se/flores/Papers_files/RNABuilder-Engineering-TCBB-reprint.pdf
http://xray.bmc.uu.se/flores/Papers_files/RNABuilder-Engineering-TCBB-reprint.pdf
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2 Biopolymers and 

monoAtoms 
 

In this Appendix, we describe how to instantiate biopolymers (RNA, protein), as well as single 

atoms such as counterions.    Note that the number of biopolymers and series of single atoms 

is limited by the number of characters available as chain identifiers. 

 

2.1 Biopolymer sequences and first residue numbers 

 

MMB can instantiate RNA chains using the following syntax: 

 

RNA <chain ID> <first residue #>  <sequence in single letter code> 

 

The RNA sequence uses the single letter code (A,U,G,C). Similarly, you can instantiate DNA 

chains like this:  

 

DNA <chain ID> <first residue #>  <sequence in single letter code> 

 

The DNA sequence uses the single letter code (A,T,G,C). You can instantiate a protein chain 

as: 

 

protein <chain ID> <first residue #> <sequence in single letter code> 

 

The protein chains use the 20 canonical amino acid alphabet for specifying the sequence.   

 

Note that as of release 2.12, you can make the chain ID as long as you wish.  This means that 

you are not limited to the 144 printable ASCII characters.  In the output PDB file, the following 

tag will indicate the long chain ID: 

 

REMARK-SimTK-long-ChainID mySuperLongNameForThisChain 
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.. where of course “mySuperLongNameForThisChain” will be replaced by whatever chain ID 

you specified. This will be followed by the corresponding ATOM records. The ATOM records 

will have a blank (“ “) in  column 22 (the chain ID column).  Finally, after all the ATOM records 

for that chain have been printed, there will be another tag, like this: 

 

REMARK-SimTK-long-ChainID 

 

.. followed by nothing.  This “turns off” the long chain ID specification.  The next chain may 

be a normal chain (single-character chain ID in column 22) or there may be another chain 

with a long ID bracketed by “REMARK-SimTK-long-ChainID” tags as before. 

 

BUT! All that is just a hack to make the .pdb format work better for the big structures MMB is 

so good at handling. Around release 3.3 Michal Tykac added mmCIF file handling. This 

removes the limitation on precision and maximum value of coordinates. It also removes the 

limitation on number of characters in chain IDs. The only downside in my view is that it 

becomes a little harder to manually manipulate structure files. Luckily MMB can read in one 

format and write in another, so you should still be able to go back to the .pdb format if you 

need to. 

 

There is one more way to instantiate sequences, which works for protein, RNA, and DNA.  You 

can issue the command: 

 

loadSequencesFromPdb  

 

And MMB will go to your input structure file (last.??.pdb) and look for RNA and protein 

chains.  It will extract the chain ID’s, residue numbers, insertion codes, and residue types from 

there.  It will also match the internal coordinates to the Cartesian coordinates it finds there, 

as usual.  You will then be able to issue commands that involve residues in those chains, as 

before.  Please note that you CANNOT use this command with long chain IDs, it just won’t 

work.  If you have long chain IDs, just instantiate the chains explicitly.   

 

In addition to removing the need for you to specify these chains manually, this command  also 

has the advantage of handling insertion codes and gaps in the numbering.  You will be able to 
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append an insertion code to the right of the residue number in any command, e.g. 

constrainToGround A 130B (where B is an insertion code).   

 

The residue numbers and insertion codes do need to be increasing from the top to the bottom 

of the input structure file, though.  Before using this command, you should clean up the input 

structure file, removing anything that is not RNA or protein – including DNA, water, ions, or 

other molecules.   

Whether you use loadSequencesFromPdb or specify the sequences manually,   it is possible 

to use the +/- operators to increment or decrement a residue ID by some number of residues.  

For instance,  

 

constrainToGround A 130A+2 

constrainToGround A 130A-1 

 

will constrain residues two residues to the C-terminus and one residue to the N-terminus of 

32B.  Do not insert any spaces between the +/- operators and either of their arguments. You 

can use the +/- operators with any command that takes residue numbers as an argument. You 

can also use user variables (which begin with “@,” explained elsewhere in this document). 

 

2.2 Clarifying arithmetic operations on residue numbers 

 

Let’s clarify the +/- operators for residue numbers a little more. In the context of residue 

numbers, the leftmost term in such an expression MUST be a real residue number that exists 

in the biopolymer. The remaining terms are strictly integers which will be summed to 

determine the increment/decrement along the sequence to be applied to the residue number. 

For example, assume the first residue number is 129. Then this is OK: 

 

@myRes 130 

mobilizer Rigid A @myRes+1  @myRes+1+1 

mobilizer Rigid A @myRes+1  @myRes+2-1 

 

The expressions evaluate as:  

 



BIOPOLYMERS AND MONOATOMS 

 

12 

@myRes+1 :  If the residue that follows 130 in chain A is  130A, it will return 130A. This is 

not an integer sum. Note that residue 130 MUST exist, or an error will be tripped. 

@myRes+1+1 : This will first sum all terms except the leftmost, strictly arithmetically, and 

get 1+1 = 2.  If the residue that follows 130A is 130B, then it will take the residue number 130, 

go 2 places towards the end terminus, and return 130B.   

@myRes+2-1 : This will return 130A in this example. 

 

This is NOT OK : 

 

mobilizer Rigid A 1+@myRes  1+1+@myRes 

 

1+@myRes  : MMB will look for a residue 1 .. and not find it (in this example the biopolymer 

begins at residue 129. It will then throw an error. MMB will NOT conclude that you are looking 

for 131, even if 131 does exist on chain A.  

 

As mentioned earlier, insertion codes are OK: 

 

130A+1   : is OK, and will return whatever the next residue actually is in the biopolymer, in 

this example 130B. 

130A+@myRes : is OK, if there are indeed at least 130 residues following 130A. if the portion 

of the biopolymer after 130A is shorter than this, then it will throw an error. 

 

1+125A : is NOT OK, even if residue 1 exists. Because 125A is not an integer. Anything terms 

other than the first must be integers. 

 

Note that for commands that do NOT expect a residue number, arithmetic operators, 

numbers, and user variables can be in any order. Later on when we talk about Lepton you will 

see that you are not limited to +/-, but have a wide variety of math operations available to you, 

though for residue numbers you should stick to +/-. 

 

 

2.3 monoAtoms 

 

The monoAtoms command specifies single atoms (e.g. monatomic ions) The syntax follows:  
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monoAtoms <chain ID> <first residue #> <# of atoms> <name of atom> 

 

Currently only the following atom names are supported: 

 

Mg+2, Cl-, Na+, K+, Li+, Ca+2, Cs+, Rb+ 

 

The single atoms created with this command support the atomSpring, atomTether, 

springToGround, and constrainToGround commands, just like the biopolymers.  They do not 

support the mobilizer command. The constraint command works with monoAtoms to some 

degree. monoAtoms are automatically added to the physics zone. 

You can read the positions of monoAtoms from your input PDB file. You have to be careful 

with atom and residue names in that file though.  For example, for a magnesium ion, the atom 

name should be “Mg+2”, while the residue name should be “MG”. Note that this is different 

from the PDB convention, in which both atom and residue name are “MG”. 

 

2.4 Water droplets 

 

The waterDroplet command puts a water droplet of a specified <droplet chainID>  and 

<radius> about the point <X> <Y> <Z>. There are tethers (with optional parameter [tether 

strength]) which constrain the water to a distance of  1.1 * <radius> about <X> <Y> <Z>. The 

syntax is: 

 

waterDroplet <droplet chainID>  <X> <Y> <Z> <radius>  

 [tether strength] 

 

Alternatively, you can provide a biopolymer (protein, RNA, or DNA) chain ID and residue 

number, and the water droplet will be centered about that residue: 

 

waterDropletAboutResidue <biopolymer chain ID>    

<biopolymer Residue Number> <radius> <tether strength>  

<water droplet chain ID> 

 



A WORD ABOUT UNITS 

 

14 

3 A word about units 
 

I am making a special, very short chapter on units. In MMB 2.10 and earlier, some forces such 

as atomSpring, springToGround, atomTether, etc. took Å as the unit for dead lengths and 

ground locations. For consistency, we are going back to nm for the length unit. This is because 

internally all the math is done in nm, kJ/mol, ps, and daltons (g/mol).  This implies that spring 

constants are in kJ/mol/nm2. For example, if you want to make a spring which in Amber99 

units (Å, kcal/mol, ps) would be 310 kcal/mol/Å2, the equivalent spring in our choice of units 

would be 129790.8 kJ/mol/nm2.  

Please note that if you have any dead lengths or ground locations  in your MMB 2.10 or earlier 

script which you are using with MMB 2.11, you will need to manually change them from Å to 

nm. 
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4 Forces 
 

In this Appendix, we describe options for using the baseInteraction, aromatic two-residue 

forces, the atomSpring, atomTether, and springToGround forces, and the contact steric forces.  

Note that since forces are additive, there is no hard limit on how many forces can exist in the 

system or even acting on a single residue, base, or atom.    

 

4.1 baseInteraction 

The syntax for this command is: 

 
baseInteraction  <chain identifier for first residue>   

<residue number for first residue>  
<interacting edge for first residue>  
<chain identifier for second residue>   
<residue number for second residue>  
<interacting edge for second residue>   
<glycosidic bond orientation>  

 

The following combinations of first base pairing edge, second base pairing edge, and glycosidic 

bond orientation are permitted: 

 

WatsonCrick WatsonCrick Cis 
WatsonCrick WatsonCrick Trans 
 
WatsonCrick Hoogsteen Cis 
WatsonCrick Hoogsteen Trans 
 
WatsonCrick SugarEdge Cis 
WatsonCrick SugarEdge Trans 
 
Hoogsteen Hoogsteen Cis 
Hoogsteen Hoogsteen Trans 
 
Hoogsteen SugarEdge Cis 
Hoogsteen SugarEdge Trans 
 
SugarEdge SugarEdge Cis 
SugarEdge SugarEdge Trans 
 
WatsonCrick Bifurcated Cis 
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Stacking3 Stacking5 Cis 
Stacking5 Stacking5 Trans 
Stacking3 Stacking3 Trans 
HelicalStackingA3 HelicalStackingA5 Cis 
Superimpose Superimpose Cis 

 

You might notice that some of these are actually not in the Leontis and Westhof classification.  

These are explained below: 

• Stacking* simply specifies a stacking interaction between consecutive residues on a 

chain.  The numbers indicate which face is interacting on each base.  For example:   

baseInteraction A 120 Stacking3 A 121 Stacking5 Cis  
 
Means that the face of base 120 which would ordinarily point towards the 3’ end of 
the strand in a helix, will be stacked on the face of base 121 which would ordinarily 
point to the 5’ end of the helix. 
 

• HelicalStacking* works the same as Stacking, but adds the offset appropriate for 

consecutive bases in a helix.  HelicalStackingA3/HelicalStackingA5 is automatically 

applied to all consecutive bases in helices, unless you specify setHelicalStacking 

FALSE.   MMB assumes an A-form helix exists whenever it finds three consecutively 

numbered RNA residues on a single strand Watson-Crick base paired with three 

consecutively numbered residues on the same or another single RNA strand.  If you 

want to generate a helix where this is not the case, you should manually apply 

HelicalStackingA3 / HelicalStackingA5  interactions.  

 

 

4.2 nucleicAcidDuplex 

 

This command generates WatsonCrick/WatsonCrick/Cis interactions between two specified 

segments on the same or different RNA chains.  It is a shortcut for manually specifying each 

such interaction for every pair of canonically interacting residues in the duplex.  The syntax 

is: 

nucleicAcidDuplex  <chain identifier A>   
<first residue on A>  
<last residue on A>  
<chain identifier B>   
<first residue on B>  
<last residue on B> 
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Recalling that the duplex is antiparallel, we require that: 

(first residue on A) < (last residue on A) 

and 

(first residue on B) > (last residue on B) 

 

For example: 

 

nucleicAcidDuplex A 1 3 A 10 8 

 

Makes the segments between residues 1 and 3 (inclusive) and between 10 and 8 (inclusive) 

into two halves of a duplex, by applying a base pairing interaction between 1 and 10, 2 and 9, 

and 3 and 8.  

 

4.3 NtC 

 

This command is new to 17.8. Previously, we would use baseInteraction’s  to impose the bse 

stacking geometry in double helices. These we would even impose automatically whenever 

three consecutive Watson-Crick base pairs were detected. Actually you should now turn off 

that behavior if you want to use NtC’s: 

 

setHelicalStacking False 

 

WatsonCrick/WatsonCrick/Cis interactions between two specified segments on the same or 

different RNA chains.  It is a shortcut for manually specifying each such interaction for every 

pair of canonically interacting residues in the duplex.  The syntax is: 

NtC  <chain identifier>   
<first residue number>  
<second residue number. Can be the next consecutive 

residue. Or you can specify any higher-numbered residue on the 
same chain, and thus apply the NtC to every consecutive pair of 
residues in that stretch.>  

<NtC class>   
<force constant>  
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For example to force the consecutive residues 1-2, and 2-3 on chain D, into A-form helical 

stacking, with force constant 1.5, we would issue: 

 

NtC D 1 3 AA00 1.5 

As a side note, the force constant 1.5 for NtCs, and forceMultiplier of about 200 for the 

baseInteraction’s, seem to be a pretty good combination for many purposes.  

 

4.4 atomSpring 

 

The atomSpring command creates a linear spring connecting two atoms.   Two optional 

parameters  (square braces []) specify the dead length and spring force constant. 

 

 atomSpring  <first chain ID> 
   <first residue number> 
   <first atom name> 
   <second chain ID> 
   <second residue number> 
   <second atom name> 
   [<dead length> 
   [<spring constant>]] 
 
 

4.5 atomTether 

 

The atomTether command, as the name implies, applies no force if the distance between 

atoms is less than a certain <dead length>,  and applies an attractive force with Hookean  

<spring constant> when the distance exceeds the former.  Default values for the last two 

parameters are 0.0 and 3.0, respectively, as they are for atomSpring.  Make <spring constant> 

large for a strict “dog leash” or small for a permissive restraint. 

 

 atomTether  <first chain ID> 
   <first residue number> 
   <first atom name> 
   <second chain ID> 
   <second residue number> 
   <second atom name> 
   [<dead length> 
   [<spring constant>]] 
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4.6 springToGround 

 

The springToGround command creates a linear spring connecting a specified atom and a 

specified location in Ground.   Two optional parameters  (square braces []) specify the dead 

length and spring force constant. 

 

 springToGround  <atom chain ID> 
    <atom residue number> 
    <atom name> 
    <X location in Ground> 
    <Y location in Ground> 
    <Z location in Ground> 
    [<dead length> [<force constant>]] 
 

4.7 alignmentForces 

 

The alignmentForces command supersedes the old threading and gappedThreading 

commands.  Like those commands, it applies cross-strand springs connecting like-named 

atoms in sequence-aligned residues. By default it does not require an alignment; instead it 

figures out a gapped alignment for you using a dynamic programming algorithm (thanks 

Seqan!). This command should work with any biopolymer type. Syntax is below.  

 

 alignmentForces  <chain 1 ID> 
    <chain 2 ID> 
 

Note that this is not always better than just using threading. We use only a very simple scoring 

function (1 point for an exactly matching residue, 0 for a mismatch) for the alignment. In some 

cases, you may get better results by providing your own alignment and using threading .  

 

You can also specify the stretches of residues to be aligned (e.g. if you want to align based on 

a certain domain). Actually I strongly recommend doing this, because whereas it is easy to get 

a slightly (or terribly) incorrect alignment based on the full length sequence, if you tell it 

domain boundaries you will probably agree with the alignment. Anyway, it works like this: 

alignmentForces  <chain 1 ID> 
    <start residue 1> 
    <end residue 1> 
    <chain 2 ID> 
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    <start residue 2> 
    <end residue 2> 
 

If you want to provide your own alignment, rather than letting MMB align the sequences for 

you, issue:  

 

alignmentForces  NoGap 

 

Recall that in MMB files are read from top to bottom, so the last parameter set PRIOR to the 

execute command (e.g. alignmentForces A B) prevails for that execute command. Parameters 

set AFTER a given execute command do not affect that command. In any event, if you want to 

later re-enable gapped alignments, issue: 

 

alignmentForces  Gapped 

 

The coolest new feature that comes with alignmentForces is one which allows you to set the 

dead lengths of the springs not to zero as before, but to some specified fraction of their initial 

lengths. Issue: 

 

alignmentForces deadLengthFraction <fraction>  

 

.. where if <fraction> in the interval (0,1], the springs will be set to <fraction> * (initial length).  

By default,  <fraction> is zero, exactly like the old behavior. If you want to return to that 

behavior, explicitly set this to zero.  

Lastly, the spring constant is now set separately from the actual alignment command: 

 

alignmentForces forceConstant <force constant>  

 

.. where if <force constant> should be > 0.0. 

 

The only behavior which has been lost in alignmentForces is the old backbone-only threading, 

but I can reinstate it upon request. 
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4.8 contact 

 

You can also apply space-filling Contact spheres to a range of residues using the contact 

command.  (The idea is similar to that of the parameters addSelectedAtoms and 

addAllHeavyAtomSterics) 

 

contact   <contact type>  
<chain identifier>   
<residue number for first residue>  
<residue number for last residue>  

 

The first residue should be lower numbered than the second, and both residues should be on 

the same chain.  You can also issue: 

 

contact   <contact type>  
<chain identifier>   

 

And the contact spheres will be applied to every residue on the specified chain. 

 

There are two kinds of permitted values of contact type.  In the fixed type, the atom identities 

are hard-coded and can’t be modified by the user, but the contact sphere radii and stiffness 

(both of which are the same for all atoms regardless of atom name) correspond to the 

excludedVolumeRadius and excludedVolumeStiffness parameters which are set in the MMB 

input file (e.g. commands.dat).  These include: 

  

AllAtomSterics     : Puts one sphere on each atom of the chain, except for the end 

caps on proteins (when used). 

AllHeavyAtomSterics  : Puts one sphere on each atom of the chain EXCEPT hydroges, 

and again except for the end caps on proteins.  

RNABackboneSterics   : Puts one sphere on each of the following atoms: P, O5*, 

C5*, C4*, C3*, and O3*.  An error will result from attempting to apply this to proteins, as 

anytime when you attempt to put sterics on an atom which doesn’t exist on a given residue. 

 
The second type of sterics are user configurable, in the parameter file (e.g. parameters.csv).  
Here the user can choose on which atoms to put the spheres, with a maximum of four atoms.  
The radii and stiffness can be controlled separately for each atom name.  A different choice 
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of zero to four atom names can be chosen for each residue type (4 residue types for RNA, 20 
for protein).  The user can add as many steric schemes to the parameter file as he/she 
wishes; as supplied the parameters.csv file has two: SelectedAtoms and 
ProteinBackboneSterics.  For the first one, the parameters look like:   
 

 
RECORD A    SelectedAtoms SelectedAtoms X P C4* N9 
RECORD C    SelectedAtoms SelectedAtoms X P C4* N1 
RECORD G    SelectedAtoms SelectedAtoms X P C4* N9 
RECORD U    SelectedAtoms SelectedAtoms X P C4* N1 

 
The second column is the residue type, and columns 7,8, and 9 are the atom names.  Note that 

the glycosidic nitrogen is named differently for purines vs. pyrimidines.  Subsequent columns 

give the sphere radii, stiffnesses, and information to identify these as contact parameter 

entries.  Parameters become available for use immediately upon being entered in the 

parameter file, much as for MD force field parameter files. 

 

It is also possible to apply a specified steric scheme to all residues within a certain distance of 

a specified residue. The distance is measured by between representative atoms – Cα for 

proteins, C4* for RNA and DNA. The syntax is: 

 

applyContactsWithin <radius (nm)> <contact scheme> <chain> <residue> 

 

 

4.9 Restraining to ground 

 
 
Much as residues can be constrained to each other (see next chapter), any residue of any chain 

can also be restrained to ground, meaning that a force can be applied to pull all six 

translational-rotational degrees of freedom to an equilibrium position and orientation in 

Ground: 

 

restrainToGround <chain ID> <residue number> 

 

Keep in mind that unlike a constraint, a restraint acts as a spring and thus allows some 

displacement with respect to ground.  Any   displacement at the end of a stage is carried over 

to the next stage, potentially leading to a “creeping” effect.  Two parameters which are relevant 
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to this command are restrainingForceConstant and restrainingTorqueConstant.  These set the 

translational and angular restitution force constants. 

 

4.10 Density based force field  

 
As explained in the tutorial, MMB’s density based force field is formulated following Klaus 

Schulten’s MDFF as follows:  

𝐹𝑖⃑⃑ = 𝐾 ∙ ∇⃑⃑ (𝐷(𝑥𝑖⃑⃑  ⃑)) ∙ 𝐴𝑖 

Where i is the atom index, Ai is the atomic number of atom i, 𝐷(𝑥𝑖⃑⃑  ⃑) is the electronic density at 

the nuclear position of atom i, K is a user-adjusted scaling factor, and ∇⃑⃑  is the gradient 

operator. Accordingly, 𝐹𝑖⃑⃑   is the density-derived force vector applied to atom i. This is 

computed for and applied to every atom i in the system. 

 

To turn on the density based force field on or off, you just need to specify which chains you 

want to be subjected to such forces.  For instance: 

 

fitToDensity 

  

Specifes that all chains in the system should be fitted to the map.  If you only want certain 

chains to be fitted, with the remaining chains not subjected to these forces, just specify each 

chain to be fitted like this: 

 

fitToDensity <chain ID> 

 

Lastly, if you only want certain stretches of residues to be fitted, you can issue: 

  

fitToDensity <chain ID> <start residue> <end residue> 

 

.. and only the residues starting at <start residue> and ending at <end residue> of chain  

<chain ID> will feel fitting forces. 

 

Your density map must be in MRC, XPLOR, OpenDX or Situs format.  To specify the location 

of the density map, file, use: 
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densityFileName <density file name> 

 

The scaling factor (A in the equation above) defaults to unity, but you can set it to any floating 

point number (including negative numbers) as follows: 

 

 densityForceConstant  <scale factor> 

 

4.11 Electrostatic Density force-field 

 

On the same idea as the Density Map fitting, you can provide MMB with an Electrostatic 

Potential grid, typically from APBS. The residues you select for fitting will then be driven into 

the map according to the partial charges of the atoms. Negative ones will tend to go in positive 

volumes and positive ones to negative volumes. 

As MMB use Amber to determine the atoms charges, it is strongly recommended to use an 

electrostatic map computed with an Amber force field. 

 

The usage is exactly the same as described for fitToDensity with the following commands: 

fitElectroDensity 

electroDensityFileName 

electroDensityForceConstant 

 

4.12 Physics where you want it 

 
Physics where you want it, introduced in release 2.4, allows you to turn on the all-atoms force 

field only for certain regions of your system, referred to as the physics zone.  

 

To specify a range of residues to be added to the physics zone, use: 

 

includeResidues <chain ID> <first residue in range> <last residue in range> 

 

Sometimes it will be convenient to include all residues within a certain radius of a specified 

residue.  For this you would use: 
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includeAllResiduesWithin <distance> <chain ID> <residue number> 

 

Note that includeResiduesWithin is an alias for includeAllResiduesWithin . The distance (in Å) 

is measured between key atoms, CA for protein and C4* for RNA and DNA. 

 

You can also simply set physicsRadius to a value > 0.  If this is set, all residues within 

physicsRadius of the “flexible”atoms will be included in the physics zone. “Flexible” atoms are 

defined as atoms belonging to a mobilized body of mass < 40. This is technically a parameter 

rather than a command, so is listed in that section separately. The syntax is just:  

 

physicsRadius <radius> 

 

Default behavior is for all atoms to be subjected to the non-bonded force field terms.  If that 

is what you want, just don’t specify either of the above commands. 

 

You can create physics zones at all interfaces between atoms belonging to different mobilized 

bodies. For example, if you have a domain hinge bending protein, with the hinge flexible, it 

would add the hinge plus residues at the domain-domain interface to the physics zone. 

something to watch out for, is that a discontinuous domain would get its inter-fragment 

interface added to the physics zone. Syntax is: 

includeIntraChainInterfaceResidues <chain> <depth> 

Where <chain> is the biopolymer chain ID in question, and <depth> is the greatest atom-atom 

distance, with atoms of different mobilized body index, that will lead to those atoms being 

included in the physics zone. 

 

You can also add specified inter-chain interfaces to the physics zone. In the most general 

polymorphism, you can specify the interface between one chain or set of chains, and another 

chain or set of chains: 

physicsInterfaces <depth (nm)> <chain 1> [<chain 2> [<chain 3> [ ...etc]]]  Versus 

<chain 1> [<chain 2> [<chain 3> [ ...etc]]] 

 

.. You can call this command to get an informative message about the other polymorphisms. 
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Lastly, we have found that small chemical groups such as methyl or alcohol can spin out of 

control in the absence of viscous forces, leading to small time steps and excessive 

computational expense.  To deal with this, you can scale the inertia of such small groups with:  

 

smallGroupInertiaMultiplier <inertia scale factor> 

 

Any nonnegative floating point number can be used here; we suggest 11.0. 

 

4.13 Potential rescaling with the “Scrubber”  

 
In Flores and Altman (RNA 2010) we found that kinetic trapping occurs often in 

computational RNA folding, as it does experimentally.  To get out of these traps we created 

the scrubber. Potential rescaling refers to cyclically varying forces. In MMB, we use a 

rectangular waveform.   For a fraction of the time (1 - dutyCycle) all forces (including 

baseInteraction’s, sterics, Amber99 force field, springToGround’s, etc.) will be turned off. 

Then for the remainder of the period  (dutyCycle) these forces will be turned back on.  The 

length of the period is set with the scrubberPeriod parameter (in ps, as always).  

 

dutyCycle <”on” fraction>  

scrubberPeriod <potential rescaling period, in ps> 

 

This is used in some of the MMB tutorial examples.  You may also find the explanation in the 

tutorial guide more intuitive. 

 

4.14 addRingClosingBond 

 

This add a ring closing bond. It only creates bonds between atoms in the same chain. Use it 

like this: 

 

addRingClosingBond <chainID> <residueID1> <atomName1> <bondCenterName1>  

<residueID2>  <atomName2> <bondCenterName2> 

 

bondCenter’s are named as e.g. bond1, bond2, .. bondN. For example, in a disulphide bridge 

(bonding atoms SG), you need to specify bond1, since bond1 is bonding to CB. 
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5 Mobilizers and constraints 
 

In this Appendix we describe mobilizer commands, which define or modify the internal 

coordinate topology of the molecule as well as constraint commands, which  add constraint 

equations that reduce the degrees of freedom of the system.   

 

It is important to keep in mind the crucial difference between these two in Internal Coordinate 

Mechanics.  A mobilizer command can reduce or increase the number of bodies that exist in a 

system; in the former case you will always save computer time.  On the other hand a constraint 

command adds constraint equations which must then be solved; while the net effect depends 

on masses and forces, computational cost typically increases. Mobilizers control bond 

mobilities, which here can be Free, Torsion, or Rigid.  

Free  means that the bond can change its length, angle, and dihedral.  

Torsion means it can change only its dihedral angle.  

Rigid means it has no degrees of freedom.  

 

One must also avoid overconstraining the system.  For example, if two rigid molecules are 

already Weld’ed (see below) to each other, do not put additional constraints on this pair of 

molecules, even if they are nominally applied to different residues.  While this is easy to keep 

track of for two bodies, watch out for more insidious ways of overconstraining.  For example, 

if A is Weld’ed to  B, and B is Weld’ed to C, do not then Weld C to A. 

 

5.1 mobilizer 

 

The mobilizer keyword is used for specifying the bond mobilities for a stretch of residues.  This 

command is overloaded.  The first variant has the following syntax: 

 

mobilizer  <bond mobility>  
<chain identifier>   
<first residue number>  
<last residue number>  
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The first residue should be lower numbered than the second, and both residues should be on 

the same chain. Bond mobility can be set to Free, Torsion, Rigid, or Default. The “Default” 

bond mobility is special, as we’ll explain in a moment. Don’t forget you can use the keywords 

FirstResidue or LastResidue, or do arithmetic on the residue numbers using the “+” operator, 

as described earlier. 

 

You can also simply say: 

mobilizer  <bond mobility>  
<chain identifier>   

 

… and this will set ALL residues in chain <chain identifier> to <bond mobility>.   

 

Lastly, you can say: 

mobilizer  <bond mobility>  
 

... and this will set all residues in ALL chains to <bond mobility>. 

 

 

 

5.2 applyMobilizersWithin 

 

The applyMobilizersWithin command is used to specifying the bond mobilities for all 

biopolymer residues within a certain radius of a specified residue.  It has the following syntax: 

 

applyMobilizersWithin <bond mobility>  
<radius>   
<chain identifier>   
<residue ID>  

 

The radius is measured between representative atoms (Cα for protein, C4* for nucleic acids) 

and (like always) in nm.  The acceptable values of <bond mobility> are as listed above.   

 

5.3 mobilizeInterfaces  
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The mobilizeInterfaces command is used to specifying the bond mobilities for all biopolymer 

residues within a certain distance of all interfaces of a given biopolymer chain or chains. The 

syntax is: 

 

mobilizeInterfaces <interface depth>  
<bond mobility>   
<chain 1> [<chain 2> [<chain 3> […etc]]]   

 

The <interface depth> is measured as the minimum distance between atoms on different 

chains across an interface. Note that this counts over all atoms, not just the Cα or C3*. We are 

now using OpenMM’s neighborlisting for this, which is pretty economical even if you aren’t 

set up to use the GPU. <bond mobility> is that desired at the interface – Rigid, Torsion, Free, 

or Default. <chain 1,2, etc>  is the list of chains forming a complex, whose interfaces with the 

rest of the system you are interested in.  For example, say you have a complex of chains A, B, 

and E.  If you issue: 

  

mobilizeInterfaces 0.6 Default A B 

 

Then all residues at the interface between the complex AB, and chain E, to a depth of 0.6 nm, 

will get bond mobility Default.  Note that this will do nothing in particular to the interface 

between A and B! In this case you could just as easily have issued: 

 

mobilizeInterfaces 0.6 Default E 

 

If you like to be explicit (a good habit, by the way), you can use the alternate syntax: 

 

mobilizeInterfaces <interface depth>  
<bond mobility>   
<chain 1> [<chain 2> [<chain 3> […etc]]]   
Versus 
<chain I> [<chain II> [<chain III> […etc]]]   
 

 

This sets the bond mobility to <bond mobility>, to a depth of interface depth>, for the 
interface between the set of chains (1,2,3..) and the chains (I,II,III..).  In our example, you 
would issue: 
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mobilizeInterfaces 0.6 Default A B Versus E 

 

5.4 singleBondMobility 

 

The singleBondMobility command is used for specifying the bond mobility for a single bond: 

 

singleBondMobility  <chain identifier for first atom>   
<residue number for first atom>  
<atom name for first atom>  
<bond mobility>  
<chain identifier for second atom >   
<residue number for second atom >  
<atom name for second atom>  

 

The two atoms should be covalently bonded to each other, of course.  

 

 

5.5 psiPhiMobility 

 

psiPhiMobility is used for specifying the bond mobility for the bonds connecting the N to CA, 

and the CA to C on the protein backbone, along a given stretch of residues.  It is equivalent to 

issuing the singleBondMobility command for the two mentioned bonds, for each residue in the 

range. 

 

psiPhiMobility <chain ID>   
<residue number for first residue in range>  
<residue number for last residue in range>  
<bond mobility (Free, Torsion, or Rigid)>  

 

You can also skip the residue numbers: 

psiPhiMobility <chain ID>   
<bond mobility (Free, Torsion, or Rigid)>  

 

.. and this will apply mobilizers to whole chain, from first to last residue. Lastly, you can skip 
the chain ID: 
psiPhiMobility <bond mobility (Free, Torsion, or Rigid)> 
 

.. and this will apply mobilizers to whole chain, for every protein chain in the system. 
 
psiPhiMobility is simply a shortcut for a bunch of singleBondMobility commands, and so 
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works in exactly the same way as the latter.  This means that it is applied late – see the 
section “Order of application of mobilizers.”  
 

5.6 Default mobilizers 

 
It is important to understand what is the default setting for the mobilizers in your system. 
 
The default bond mobility leaves most bonds set to Torsion, but there are also some Rigid 
bonds, depending on the residue type and atoms it connects.  For instance, the bond 
mobilities for an RNA residue look like this: 
 

 
 

Figure 1 : Default bond mobilities for an RNA residue 

Black:  Rigid; Red:  Torsion; Yellow: Free. 

 
Similarly for a protein residue, most bonds are also Torsion. There are certain bonds and 
groups that are set to Rigid:  
 
All peptide bonds (C-N) 
All covalent bonds between hydrogens and heavy atoms 
Proline N-Cα (This may be changed to Torsion) 
Guanidinium group (Arginine CZ-NH1, CZ-NH1, CZ-NE) 
Amide groups (Asparagine Cγ-Nδ2, Glutamine Cδ-NE2) 
Cyclic groups in Tryptophan, Histidine, Phenylalanine, Tyrosine. EXCEPT that ring closing 



MOBILIZERS AND CONSTRAINTS 

 

32 

bonds are special (nonexistent topologically, subject to bonded MD force field terms): 
 Tryptophan Cδ2-Cγ, CZ3-CH2 
 Histidine, Tyrosine and Phenylalanine Cδ2-Cγ 
 Proline Cδ-N  
 
 
 

 

Figure 2 : Bond mobilities for proteins. By default, most bonds have Torsion bond 

mobility (red). Peptide bonds are Rigid, as are guanidinium and amide groups. 

Hydrogens and double-bonded oxygens are also connected with Rigid bonds. The user 

can create a ring closing bond which will have Free bond mobility.  Ring closing bonds 

are special in that they do not topologically connect atoms, only apply bonded forces 

(bond stretch, angle bend, dihedral) – recall that closed cycles are not desirable in 

internal coordinates.  Cyclic groups of Histidine, Tryptophan, Phenylalanine, and 

Tyrosine (but not Proline) are connected with Rigid bonds and so form a single body; the 

ring closing bonds do not change this. Peptide bonds are Rigid. All of these default bond 

mobilities can be overridden by the user. For example, the segments on either end of the 

chain have here been made Rigid. Lastly, the user can also create a disulphide bridge 

between cysteines using a ring closing bond (inset).  

 

5.7 Order of application of mobilizers 

 
In order to get the desired result out of MMB, you should understand the order in which 
these commands are applied.  They go like this: 
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1.  mobilizer (for Rigid, Free, and Torsion) 
2. applyMobilizersWithin (for Rigid, Free, and Torsion) 
3. mobilizeInterfaces (for Rigid, Free, and Torsion) 
4. mobilizer, applyMobilizersWithin, and mobilizeInterfaces (for Default) 
5. singleBondMobility (incl. psiPhiMobility) 

 
 
 A common mistake is to forget that before any commands are applied, all chains have a 
default bond mobility, as described above.  Note also that the “Default” bond mobility isn’t 
actively applied to residues – instead when you specify this, all other modifications to the 
residue bond mobility are removed, so it is simply never changed from its original bond 
mobility.   
 
Here is a simple example: 
 
protein A 1 AAAAAA 
mobilizer Rigid A 1 6 
mobilizer Default A 3 4 
 
Results in two Rigid stretches (1 to 2 and 5 to 6) – the output looks something like this: 
 
src/MobilizerContainer.cpp:44 Mobilizer stretch 0 BondMobility = Rigid 
src/MobilizerContainer.cpp:45 chain= A from residue 1 to 2 
/Users/Sam/svn/RNAToolbox/trunk/src/MobilizerContainer.cpp:44 Mobilizer stretch 1 
BondMobility = Rigid 
src/MobilizerContainer.cpp:45 chain= A from residue 5 to 6 
 
 
 

5.8 constraint 

 
The constraint command is used for specifying constraints to weld residues or monoAtoms 

together: 

constraint  <chain identifier for first residue>   
<residue number for first residue>  
Weld  
<chain identifier for second residue>   
<residue number for second residue>  

 
The two welded residues can be on different chains; in fact either or both residues can be in 
RNA or protein chains.  The weld is applied on C3* atoms of RNA residues and on C atom s 
of protein residues.  There is no preference for residue number ordering.    
 
You can also specify which atoms you want welded, as follows: 
 
constraint  <first atom chain identifier>   

<first atom residue>  
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<first atom name>  
Weld  
<second atom chain identifier>   
<second atom residue number>  
<second atom name>  
 

Lastly, you can weld to ground, either specifying the atom to be welded or using the default:  
 
constraint  <chain identifier>   

<residue number >  
<atom name>  
Weld Ground 
 

or: 
 
constraint  <chain identifier>   

<residue number >  
Weld Ground 

 
This syntax treats monoAtoms and biopolymer atoms on an equal footing, except that in the 
case of monoAtoms you cannot avoid providing  the atom name. 
 
 

5.9 Constraining to ground 

 
 
Just as residues can be constrained to each other, any residue of any chain can also be 

constrained (rigidly attached) to ground: 

 

constrainToGround <chain ID> <residue number> 

 

See Appendix: Parameters for an explanation of the constraintTolerance parameter, relevant 

to this command. 

 

Much more efficient are a couple of variants of this command.  For example: 

 

constrainToGround  

 

(with no parameters) attaches each chain to ground using a Weld rather than a Free mobilizer.  

Thus rather than granting 6 DOFs and then removing them with constrain equations, the 

DOFs never exist to begin with. 
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Similiarly, you can choose the mobilizer type (Free vs. Weld) for all chains by issuing: 

 

rootMobilizer <"Free" | "Weld"> 

 

Or, you can choose the mobilizer type for a specific chain by issuing: 

 

rootMobilizer <Chain> <"Free" | "Weld"> 

 

5.10 Constraining rigid segments to each other or to ground 

 
In the antibody design example (see Tutorial), we have a protein which has two rigid segments 

and one flexible segment.  To prevent the two rigid segments from moving with respect to 

ground, we welded them to ground. Alternatively, maybe we could have welded the rigid 

segments to each other, so the protein as a whole could move with respect to its binding 

partner (or ground, for that matter). Sometimes you may want a chain to have many rigid 

segments, all welded either to ground or to a specified residue.  MMB has a convenient 

command for this.   

 

If you want to weld all rigid segments of all chains to ground, just issue: 

 

constrainChainRigidSegments  

 

If you want to weld the rigid segments of a specified chain to ground, issue: 

 

constrainChainRigidSegments <chain ID> Ground  

 

where <chain ID>  refers to the chain in question. 

 

Lastly, if you want to weld the rigid segments of a specified chain to a specified residue (on the 

same chain), issue: 

 

constrainChainRigidSegments <chain ID> <residue ID>  
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In this latter case, all the rigid segments in chain <chain ID> will be welded to the same residue 

<residue ID>.  This means that the rigid segments will move together, allowing rigid body 

motions of the entire chain.  If you want several chains to move together, just add a constraint 

command. 

 

 

5.11 constrainInterfaces 

 

The constrainInterfaces command is used to apply a Weld constraint across one or more pairs 

of biopolymer chains. within a certain distance of all interfaces of a given biopolymer chain or 

chains. The syntax is: 

 

mobilizeInterfaces <interface depth>  
<chain 1> [<chain 2> [<chain 3> […etc]]]   

 

The <interface depth> is measured as the minimum distance between atoms on different 

chains across an interface. If the minimum distance between the chains is greater than this, 

no constraint will be applied. The constraint will be applied to the first pair of atoms found, 

which spans the two chains and whose internuclear distance is smaller than <interface depth>. 

Note that this counts over all atoms, not just the Cα or C3*. We are now using OpenMM’s 

neighborlisting for this, which is pretty economical even if you aren’t set up to use the GPU. 

<chain 1,2, etc>  is the list of chains forming a complex, whose interfaces with the rest of the 

system you are interested in.  For example, say you have a complex of chains A, B, and E.  If 

you issue: 

  

constrainInterfaces 0.6 A B 

 

Then chains A and B will each separately be constrained to chain E, unless one of the two 

former chains is more than 0.6 nm from E, in which case that chain will not be constrained to 

E. Note that this will not apply a constraint between A and B! In this case you could just as 

easily have issued: 

 

constrainInterfaces 0.6 E 

 

If you like to be explicit (a good habit, by the way), you can use the alternate syntax: 



   Mobilizers and 

constraints  

  

 

37 

 

mobilizeInterfaces <interface depth>  
<chain 1> [<chain 2> [<chain 3> […etc]]]   
Versus 
<chain I> [<chain II> [<chain III> […etc]]]   
 

 

This creates all possible pairwise constraints between <chain 1,2,..etc> and <chain I, II..etc> 
,  skipping pairs of chains with minimum separation greater than <interface depth>. You 
would get the same result as before if you issue: 
 
constrainInterfaces 0.6 Default A B Versus E 

 

 

 

5.12  Coupling protein backbone ψ and φ angles  

 
If you are modeling homomultimers or for some other reason wish to impose symmetric 

motion of protein backbones, you can use the following command: 

 

couplePsiPhiAngles <Chain A> <start residue A> <end residue A> <Chain B> <start residue 

B> <end residue B> 

 

This forces corresponding residues in chains A and B, over the specified range, to have the 

same ψ and φ angles. You need to make sure that the ranges <start residue A> <end residue 

A> and <start residue B> <end residue B> have the same number of residues. However strictly 

speaking you could get away with these stretches not having the same sequence, since the 

coupled-coordinate constraints apply only to the backbone angles.  
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6 Direct structure editing  
 

In this chapter we talk about editing structure directly, meaning modifying internal or 

Cartesian coordinates of structures, adding or removing atoms, etc. For now this chapter is 

quite short, other features will be documented soon. 

 

 

6.1 Initial displacement  

 
This command simply displaces the designated chain by a given Cartesian vector, with respect 

to its position in the input structure file: 

 

initialDisplacement <chain> <X> <Y> <Z> 

 

6.2 Imposing protein secondary structure 

 
Have you ever simply wanted to impose a certain secondary structure in a certain region of 

your model?  Say, make a helix-turn-helix into a single continuous helix?  Well, with the new 

setPhiPsiAngles command you can do just that. It sets the phi, psi, and peptide dihedral 

angles to the defaults for Alpha, ParallelBeta and AntiParallelBeta secondary 

structures, overriding whatever values these dihedrals may have taken from the input 

structure file.  The syntax is: 

 

setPhiPsiAngles <chain ID> <start residue> <end residue> < Alpha | 

ParallelBeta | AntiParallelBeta> 

 

These are applied after structure matching. If the command is issued multiple times, the 

dihedral angles are set  in the order the commands were issued. 

 

6.3 Introducing a substitution mutation  
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A common structure editing operation is to substitute one residue type for another. The syntax 

is: 

substituteResidue <chain> <residue ID> <new residue type>  

The residue at position <residue ID> will simply be replaced by one of type <new residue 

type>. If you provided an input structure file, MMB will match all the internal coordinates it 

can based on identical atom names, and use default values for the remaining internal 

coordinates.  For example if your mutate alanine to valine, it will match the Cα and Cβ 

positions, but will choose a position for  Cγ1 and Cγ2 based on default bond lengths, angles, 

and dihedrals.  Note that substitutions in general will need to be equilibrated to ensure 

reasonable interatomic contacts.   

 

6.4 Introducing an insertion mutation  

 
Another common structure editing operation is to insert a residue. The MMB syntax for this 

is: 

insertResidue <chain> <residue ID> <inserted residue type>  

MMB will simply insert a residue at position <residue ID>. It will figure out the position 

respecting the PDB convention of residue numbers being ordered first by residue number, 

then by insertion code.  You can insert in the middle of the chain, or at either terminus.   

 

 

6.5 Making a deletion mutation  

 
It’s even simpler to delete a residue. The MMB syntax for this is: 

deleteResidue <chain> <residue ID>  

MMB will simply delete the residue at position <residue ID>. You can also delete an entire 

range, like this: 

deleteResidue <chain> <start residue ID> <end residue ID> 

.. and MMB delete all residues in the specified range.  Lastly, you can delete an entire chain, 

like this:  

deleteResidue <chain>  

 

6.6 Renumbering residues 
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The PDB has been referred to as a bioinformatician’s nightmare. There are several reasons for 

this, one of which is that structural biologists can be rather liberal in their interpretation of 

the residue numbering rules, in particular what insertion codes mean and in what order they 

should go. There is also the problem of gaps. Some software packages, such as FoldX, don’t 

handle insertion codes very well. So there are many reasons why you may wish to change the 

numbers so they start at some integer value and increase consecutively from there. To do this, 

simply issue: 

 

renumberBiopolymerResidues  
 

MMB will simply renumber all biopolymer chains to start at 1. Note that any commands issued 

in the same stage, that access residue numbers, implicitly or explicitly, will cause MMB to 

crash. Sorry. So if you need to renumber, do it in a stage that involves nothing else. You can 

do any modeling you wish before and after that stage. Here is an example of me renumbering 

1A22.pdb:  

  

firstStage 2 

lastStage  3 

readAtStage 2 

    loadSequencesFromPdb 1A22.pdb 

    renumberBiopolymerResidues 

    reportingInterval .0000000001 

    numReportingIntervals 1 

readBlockEnd 

readAtStage 3 

    # last.2.pdb will have renumbered residues, which will now be 

read by: 

    loadSequencesFromPdb 

    # You can issue any commands you want here. Just use the new 

residue numbers. 

readBlockEnd  
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An alternative syntax involves calling loadSequencesFromPdbAndRenumber. This is just 

like loadSequencesFromPdb, but it renumbers right after the coordinate matching step. 

Unfortunately it is also pretty much incompatible with any residue-specific operations. 

Example usage is only slightly different:  

  

firstStage 2 

lastStage  3 

readAtStage 2 

    loadSequencesFromPdbAndRenumber 1A22.pdb 

    reportingInterval .0000000001 

    numReportingIntervals 1 

readBlockEnd 

readAtStage 3 

    # last.2.pdb will have renumbered residues, which will now be 

read by: 

    loadSequencesFromPdb 

    # You can issue any commands you want here. Just use the new 

residue numbers. 

readBlockEnd  
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7 Building arbitrary 

molecules (beta) 
 

In this chapter we talk about building arbitrary molecules.  Here MMB will turn user 

commands into molmodel commands. This feature is very much in beta, so you will need help 

if you are going to do anything complicated. There exist both known and (almost certainly) 

unknown bugs.  Contact me if you are using this! 

 
 

7.1 Example: benzene 

 
This is the approach which is most general, building up the molecule one atom at a time: 

 

# chain ID and arbitrary 3-character residue name: 

molecule initialize B RNG 

# create a trivalent atom, of element Carbon, name it C1: 

molecule B setBaseAtom   TrivalentAtom C1 Carbon 

# The TrivalentAtom has bonds named bond1, bond2, and bond3.  Attach 

the next atom to one of these three (here we chose bond2) and 

specify the bond length (.14 nm): 

molecule B bondAtom TrivalentAtom C2 Carbon C1/bond2 .14 

# note that in the above, bond2 of C1 is now occupied.  It's also 

implicit that bond1 of C2 is occupied, because that's by default the 

bond on the child which is used for attachment. 

# now all the other four carbons in the ring: 

molecule B bondAtom TrivalentAtom C3 Carbon C2/bond2 .14 

molecule B bondAtom TrivalentAtom C4 Carbon C3/bond2 .14 

molecule B bondAtom TrivalentAtom C5 Carbon C4/bond2 .14 

molecule B bondAtom TrivalentAtom C6 Carbon C5/bond2 .14 

# Use the special atom type AliphaticHydrogen here, and use another 

available bond.   

molecule B bondAtom AliphaticHydrogen H1 Hydrogen C1/bond3 .1 

molecule B bondAtom AliphaticHydrogen H2 Hydrogen C2/bond3 .1 

molecule B bondAtom AliphaticHydrogen H3 Hydrogen C3/bond3 .1 

molecule B bondAtom AliphaticHydrogen H4 Hydrogen C4/bond3 .1 

molecule B bondAtom AliphaticHydrogen H5 Hydrogen C5/bond3 .1 

molecule B bondAtom AliphaticHydrogen H6 Hydrogen C6/bond3 .1 

# Now for atoms C2,C3,C4,and C5, we have now occupied bond1 (to 

attach to the preceding atom), bond3 (to attach a hydrogen), and 

bond2 (to attach the succeeding atom). So no bonds left on those 

atoms. 
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# C1 has bond1 still available (because it has no parent atom).  C6 

has C2 available, because it has no child atom. 

 

#Find convenient biotypes in your tinker parameter file for these 

atoms.  In this case we used Phenylalanine CZ, with Ordinality:Any 

for the carbons, and Phenylalanine HZ for the aliphatic hydrogens: 

molecule B setBiotypeIndex C1 Phenylalanine CZ Any 

molecule B setBiotypeIndex C2 Phenylalanine CZ Any 

molecule B setBiotypeIndex C3 Phenylalanine CZ Any 

molecule B setBiotypeIndex C4 Phenylalanine CZ Any 

molecule B setBiotypeIndex C5 Phenylalanine CZ Any 

molecule B setBiotypeIndex C6 Phenylalanine CZ Any 

 

molecule B setBiotypeIndex H1 Phenylalanine HZ Any 

molecule B setBiotypeIndex H2 Phenylalanine HZ Any 

molecule B setBiotypeIndex H3 Phenylalanine HZ Any 

molecule B setBiotypeIndex H4 Phenylalanine HZ Any 

molecule B setBiotypeIndex H5 Phenylalanine HZ Any 

molecule B setBiotypeIndex H6 Phenylalanine HZ Any 

 

# Now we add a bond to close the ring.  Recall the bond centers that 

are available on C1 and C6: 

addRingClosingBond B C1 bond1 C6 bond2 

 

7.2 Example: ethane 

 
Here is an example of how to build ethane: 

 

molecule initialize B MTN 

molecule B setBaseCompound MethylGroup 

molecule B convertInboardBondCenterToOutboard 

#molecule B bondAtom AliphaticHydrogen H4 Hydrogen methyl/bond 

0.1112 

molecule B bondCompound methyl2 MethylGroup MethylGroup/bond 

molecule B setBiotypeIndex C MethaneC 

molecule B setBiotypeIndex H1 MethaneH 

molecule B setBiotypeIndex H2 MethaneH 

molecule B setBiotypeIndex H3 MethaneH 

molecule B setBiotypeIndex methyl2/C MethaneC 

molecule B setBiotypeIndex methyl2/H1 MethaneH 

molecule B setBiotypeIndex methyl2/H2 MethaneH 

molecule B setBiotypeIndex methyl2/H3 MethaneH 

#molecule B setBiotypeIndex H4 MethaneH 

molecule B defineAndSetChargedAtomType MethaneC 1 -0.18 

molecule B defineAndSetChargedAtomType MethaneH 34 0.06 
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7.3 Example: GDP 

 
Here is an example of how to build GDP: 

 

molecule initialize H   G    

molecule H setBaseCompound  Guanylate    

# Add alpha phosphate : 

molecule H bondAtom QuadrivalentAtom PA Phosphorus O5*/bond1 .14  

molecule H setBiotypeIndex PA Phosphate,?RNA P Initial 

molecule H bondAtom UnivalentAtom  OPA1 Oxygen PA/bond3 0.14800 

molecule H bondAtom UnivalentAtom  OPA2 Oxygen PA/bond4 0.14800 

molecule H setBiotypeIndex OPA1 Phosphate,?RNA OP Initial 

molecule H setBiotypeIndex OPA2 Phosphate,?RNA OP Initial 

molecule H bondAtom  BivalentAtom OPA3 Oxygen PA/bond2 .140  2.094 

molecule H setBiotypeIndex OPA3 Phosphate,?RNA O5* Initial 

molecule H bondAtom QuadrivalentAtom P Phosphorus OPA3/bond2  .14  

molecule H bondAtom UnivalentAtom  OP1 Oxygen P/bond3 0.14800 

molecule H bondAtom UnivalentAtom  OP2 Oxygen P/bond4 0.14800 

molecule H bondAtom UnivalentAtom  OP3 Oxygen P/bond2 0.14800 

molecule H setBiotypeIndex P Phosphate,?RNA P Initial 

molecule H setBiotypeIndex OP1 Phosphate,?RNA OP Initial 

molecule H setBiotypeIndex OP2 Phosphate,?RNA OP Initial 

molecule H setBiotypeIndex OP3 Phosphate,?RNA OP Initial 

 

 

7.4 Example: water 

 
I apologize in advance about how hard it is to make a simple water molecule!  

 

molecule initialize H H2O 

molecule H setBaseAtom BivalentAtom OW1 Oxygen 

molecule H bondAtom UnivalentAtom HW1 Hydrogen OW1/bond1 .14 

molecule H bondAtom UnivalentAtom HW2 Hydrogen OW1/bond2 .14 0 Free   

molecule H defineBiotype O 2 TIP3P Oxygen 

molecule H defineBiotype H 1 TIP3P Hydrogen 

molecule H setBiotypeIndex OW1  TIP3P Oxygen  Any 

molecule H setBiotypeIndex HW1  TIP3P Hydrogen  Any 

molecule H setBiotypeIndex HW2  TIP3P Hydrogen  Any 

molecule H defineAndSetChargedAtomType  TIP3P Oxygen Any 21  -0.834 

molecule H defineAndSetChargedAtomType  TIP3P Hydrogen Any 30 0.417 

molecule H setDefaultBondAngle 104.52 HW1 OW1 HW2 
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8 Global parameters 
 

This appendix, describes global parameters available to users.  It does not cover commands 

such as baseInteraction, aromatic, contact, mobilizer, and constraint. The simplest difference 

between a parameter and a command is the following. A command can be issued an 

unbounded number of times, subject only to memory and computer time limitations.  The 

major caveat is that in the case of constraint commands, one must not overconstrain the 

system.  In contrast a parameter can only be set once (at least for a given stage); if a parameter 

is set multiple times for a given stage, only the last value of that parameter will be used. A 

listing of all user-configurable global parameters and their current values is printed at the 

beginning of every stage of an MMB run.  Some additional parameters are available but rarely 

used or not recommended; contact the author with questions on these.  

 

This chapter does not describe staged parameters.  These are parameters for which not only 

the value, but also the stage at which they first take effect is specified, for example temperature 

and dutyCycle.  

 

 
addAllAtomSterics Bool FALSE Add steric contact spheres to all atoms.  This is more expensive 

and more prone to kinetic trapping than addSelectedAtoms. 
addAllHeavyAtomSterics                     

  

Bool FALSE Add steric contact spheres to all atoms EXCEPT hydrogens.   

checkSatisfied                        

  

Bool FALSE At each reporting interval, list all the baseInteraction’s and 

determine which were satisfied.   
constraintTolerance                   

  

float 0.05 This determines the tolerance of the Weld constraint.  If 

Weld’ed pieces are moving relative to each other, reduce this 

number. 
cutoffRadius                            float 0.1 This is the range of the MMB potential.  See our Multiple-

template homology modeling paper. 
densityFileName String  Name of file for fitting based on electron density, in .xplor 

format.  If you need to convert from some other format, we 

recommend using mapman (e.g. rave_osx for mac).  

Instructions are here: 

http://xray.bmc.uu.se/usf/mapman_man.html#S10 

densityForceConstant Float 1 Scale factor for the density based forces 

firstStage                              int 1 Stage at which simulation should begin.   
globalAmberImproperTorsionSc float 0  
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aleFactor    

 

These eight parameters set scaling factors for terms in the 

Amber99 potential.  Most default to 0 for economy. 

globalBondBendScaleFactor               float 1.0 
globalBondStretchScaleFactor

   

float   1.0 

globalBondTorsionScaleFactor

   

float 0 

globalCoulombScaleFactor 

  

float 0 

globalGbsaScaleFactor 

   

float 0 

globalVdwScaleFactor 

   

float 0 

initialSeparation float 20.0 Sets the separation between chains at stage 1, or whenever 

readPreviousFrameFile = false. 

integratorAccuracy                    

  

int 0.001 Integrator tolerance, applies for variable step size time 

integrators. 
integratorStepSize                    

  

int 0.001 Step size in ps, for fixed step size integrators. 

integratorType     

  

string Verlet Choose between Verlet, RungeKuttaMerson 

integratorUseFixedStepSize              Bool FALSE self explanatory 
lastStage   

  

int 1 Stage at which simulation will end 

leontisWesthofInFileName                string ./paramet

ers.csv 
MMB parameter file 

loadTinkerParameterFile                 Bool FALSE If FALSE, uses hard-wired Tinker parameters.  If 1, reads 

parameters from tinkerParameterFileName 
numReportingIntervals  

alias maxReportingIntervals

   

int 100 Number of reporting intervals per stage. 

nastGlobalBondTorsionScaleFact

or  
int 10 Scale factor for NAST torsional potential 

physicsRadius Float 0 If this is set to a value > 0, all residues within physicsRadius of 

any “flexible” atoms will be added to the physics zone. 

“flexible” atoms are defined as those belonging to a mobilized 

body of mass < 40. 

randomizeInitialVelocities Bool FALSE Adds a random velocity to each body at the beginning of the 

simulation stage.  Note that if you are have any non-

interacting bodies (e.g. free ions with charges turned off) you 

may wish to apply initial velocities, otherwise the Nose-

Hoover thermostat will leave them in their zero kinetic energy 

state.    

reportingInterval  

  

float 1.0 Duration of reporting intervals, in ps. 

removeRigidBodyMomentum Bool FALSE When True, periodically sets overall translational and 

rotational momentum to zero. 

rigidifyFormedHelices 

   

Bool FALSE  
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scrubberPeriod  

   

float 4 Duration of one cycle of potential rescaling (ON time + OFF 

time) in ps. 
safeParameters                          Bool TRUE When TRUE, checks for syntax errors as well as some 

potentially dangerous parameter values. 
setForceAndStericScrubber

   

Bool FALSE No longer user configurable.  When dutyCycle < 1.0, this is 

automatically set to TRUE.  It turns ALL forces (including 

baseInteraction’s, sterics, Amber99 force field, 

springToGround’s, etc.) off for (dutyCycle -1) fraction of each 

scrubberPeriod.   

setHelicalStacking  

  

Bool TRUE if TRUE, identifies three consecutive 

WatsonCrick/WatsonCrick/Cis base pairs as a helix and applies 

HelicalStackingA3/HelicalStackingA5/Cis baseInteraction’s 

between the consecutive residues on each strand. 
setTemperature  

   

Bool TRUE Turns on thermostat. 

thermostatType                          string  Choices are NoseHoover and VelocityRescaling 
tinkerParameterFileName                 string  Name of the tinker-formatted parameter file.  Only needed if 

the tinker force field is turned on. 
baseInteractionForceMultiplier 

alias 
twoTransformForceMultiplier  

alias forceMultiplier            

float 100 Scale factor applied to all baseInteraction and aromatic forces.  

100 or 1000 is recommended to speed up modeling. 

useFixedStepSize                        Bool FALSE Specifies fixed-step-size time integration. 
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9 Macros 
 

This appendix describes macros available to users.  These macros set parameters on the user’s 

behalf.  These are provided in cases where the corresponding commands might be confusing 

to the user, or simply not under user control. 

 

 
matchFast This sets matchExact TRUE, matchIdealized FALSE, 

matchOptimize FALSE, and guessCoordinates FALSE.  It is 

very economical. It is the default behavior, so usually there is 

no need to call this. 
setDefaultMDParameters Equivalent to issuing: 

globalBondTorsionScaleFactor    1.0  

globalAmberImproperTorsionScaleFactor  1.0 

globalBondBendScaleFactor       1.0  

globalBondStretchScaleFactor    1.0  

globalBondTorsionScaleFactor    1.0  

globalCoulombScaleFactor        1.0  

globalVdwScaleFactor            1.0  

globalAmberImproperTorsionScaleFactor  1.0 
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10 User defined variables, 

parameter arithmetic, and 

conditional blocks  
 

In this Appendix, we describe how to define numerical variables, and various ways to specify 

sections of the input file which are to be read or ignored at certain stages.  

 

10.1 Comment marker  

 

The comment marker is  #, e.g.: 

 

# Don’t read this, it’s just a comment 

 

10.2 User defined variables 

 

User variables are defined with the following syntax: 

 

@<variable-name> <float or integer value> 

 

The variable @<variable-name> can then be used wherever a literal integer or float is 

expected.  If a float is assigned to the variable, and the variable is later used where an integer 

is expected, MMB will return an error. The definition of the variable should precede its first 

use in the input file.  For example: 

 

#declare @myStage variable and set to 3  

@myIntervals 3 

# now use it where a number (in this case an integer) is expected: 

numReportingIntervals @myIntervals 
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Don’t use any punctuation or whitespace in <variable-name>.  

Don’t try to set firstStage or lastStage  with a user variable. 

 

10.3 Parameter arithmetic  

 

User variables are pretty handy, and start to make the command file more like a programming 

language. In the same vein, MMB allows the ‘+’ and ‘-’ operators. This means that any integer 

or floating-point (double-precision) parameter value can be set using a combination of literals, 

user variables, and the above operators. There is no limit to the number of operators and 

operands.  Here are a couple of examples: 

 

@DUMMY 40 

numReportingIntervals  @DUMMY+10-@DUMMY 

@MYFLOAT 0.35 

reportingInterval  4+@MYFLOAT-0 

 

This is equivalent, of course, to:  

 

numReportingIntervals  10 

reportingInterval  4.35  

 

Don’t use any whitespace or additional punctuation (such as parentheses, commas, etc.) in an 

arithmetic expression. Note also that residue ID’s are special (they’re not integers), and their 

‘+’ operator follows different rules (see Chapter 2). 

 

For non-residue number parameters, you have MUCH more power, there you can use any 

mathematical operation enabled by the Lepton (Lightweight Expression Parser, 

simtk.org/projects/lepton) library. Download Lepton to see its user manual with full list of 

available functions.   

 

10.4 Conditional blocks  

In many cases we will want to issue different commands and make different choices of 

parameter values at different stages of a job.  For this purpose we can enclose a block of the 

input file in a conditional block, which is opened as follows: 
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readFromStage <stage-number>  Read only if the current stage is equal to or 

GREATER than <stage-number>. 

readToStage                  Read only if the current stage is equal to or LESS 

than <stage-number>. 

readAtStage     Read only if the current stage is EQUAL to  

<stage-number>. 

readExceptAtStage    Read only if the current stage is NOT EQUAL to 

<stage-number>. 

 

The commands and parameters to be conditionally read follow, and the end of the block is 

indicated with a readBlockEnd statement, e.g.: 

 

# start conditional block: 

readAtStage 3 

# read the following lines only at stage 3: 

sequence C CCUAAGGCAAACGCUAUGG 

firstResidueNumber C 146 

baseInteraction A 2658 WatsonCrick A 2663 WatsonCrick Cis  

contact C 146 SelectedAtoms C 164        

# end conditional block: 

readBlockEnd 

# continue with the rest of the input file 

 

 


