

 MMB 4.2

 Tutorial
 Updated February 21, 2025

2

Copyright and Permission Notice

Copyright (c) 2009+ Samuel Coulbourn Flores, Swedish University of Agricultural Sciences
Contributors: Joy P. Ku

For full copyright and permission notice, see the Reference guide.

iii

Acknowledgments

Samuel Flores’s early development of RNABuilder was funded by the Simbios National Center
for Biomedical Computing through the National Institutes of Health Roadmap for Medical
Research, Grant U54 GM072970. Information on the National Centers can be found at
http://nihroadmap.nih.gov/bioinformatics. Past support has been received from eSSENCE
and Uppsala University. The author is now an Associate Senior Lecturer (Universitetslektor)
at the Swedish University of Agricultural Sciences (SLU) in Uppsala. He has a secondary
appointment as Dean of Students of the Swedish National Graduate School in Medical
Bioinformatics, at Stockholm University, funded by a Swedish Research Council grant.

v

Table of Contents

1	 OVERVIEW ... 9	

2	 PREREQUISITES AND INSTALLATION INSTRUCTIONS 11	

3	 EXERCISE 0: YOUR FIRST MMB RUN ... 15	

3.1	 Objectives ... 15	
3.2	 Verify you have the required files .. 15	
3.3	 Open a command prompt/terminal window .. 16	
3.4	 Navigate to your MMB folder .. 16	
3.5	 Run MMB ... 17	
3.6	 Visualize MMB results ... 18	

4	 EXERCISE 1: GENERATING YOUR FIRST 3D MODEL 21	

4.1	 Objectives ... 21	
4.2	 Examining and editing the input parameters file ... 21	

4.2.1	 RNA and protein sequence commands .. 22	
4.2.2	 Stage parameters .. 22	
Run parameters ... 23	
4.2.3	 Temperature .. 25	
4.2.4	 Base pairing and nucleic acid duplex force commands .. 25	
4.2.5	 Global simulation parameters ... 28	
4.2.6	 Turning on the MD force field .. 29	

5	 EXERCISE 1B: GENERATING YOUR FIRST 3D MODEL, MODERN WAY
WITH NTC’S ... 31	

5.1	 Objectives ... 31	
5.2	 Examining and editing the input parameters file ... 31	

5.2.1	 RNA and protein sequence commands .. 32	
5.2.2	 Stage parameters .. 32	
Run parameters ... 33	
5.2.3	 Temperature .. 35	
5.2.4	 Base pairing and nucleic acid duplex force commands .. 35	
5.2.5	 Global simulation parameters ... 38	

vi

5.2.6	 Turning on the MD force field .. 39	
5.2.7	 Turning OFF the old-style stacking parameters, and using NtCs 39	

6	 EXERCISE 2: READING STRUCTURES FROM A PDB FILE AND
RIGIDIFYING PARTS OF YOUR MODEL ... 42	

6.1	 Objectives .. 42	
6.2	 Rigid mobilizers and Weld constraints ... 43	
6.3	 SelectedAtoms ... 44	
6.4	 Run example .. 45	
6.5	 On your own: Determine the effects of the Weld constraints and rigidification 46	
6.6	 On your own: Turn the RNA into a different 3D structure ... 46	

7	 EXERCISE 3: HOMOLOGY MODELING AZOARCUS TO TETRAHYMENA
RIBOZYME P6AB .. 47	

7.1	 Objectives .. 47	
7.2	 Specifying the template ... 47	

7.2.1	 Read in the PDB file for the template ... 47	
7.2.2	 Specify template sequence to match information in the PDB file 48	
7.2.3	 Rigidify the template .. 48	

7.3	 Specify the sequence of the target chain ... 48	
7.3.1	 Account for sterics using “Physics where you want it” ... 49	

7.4	 Apply forces to pull the corresponding residues together .. 49	
7.5	 Run example .. 50	

8	 EXERCISE 4: PROTEIN HOMOLOGY MODELING 52	

8.1	 Objectives .. 52	
8.2	 Specifying the template ... 52	

8.2.1	 Provide the PDB file for the template ... 52	
8.2.2	 Start the run .. 53	
8.2.3	 Specify template sequence to match information in the PDB file 53	
8.2.4	 Specify model sequence, for which no structural information is available 53	
8.2.5	 Rigidify the template and constrain it to ground .. 53	
8.2.6	 Globally align the model and template (with gaps) .. 54	
8.2.7	 Globally align (no gaps) ... 55	

9	 EXERCISE 5: PROTEIN MORPHING .. 57	

9.1	 Objectives .. 57	

vii

9.2	 Introduction ... 57	
9.3	 Preparing the input structure file .. 58	
9.4	 Start the run ... 58	
9.5	 Examine the input file ... 58	
9.6	 On your own: complete the morph with a fully-flexible alignment 62	

10	 EXERCISE 6: EFFICIENTLY GENERATE ALTERNATE PROTEIN
CONFORMATIONS ... 65	

10.1	Objectives ... 65	
10.2	Introduction ... 65	
10.3	The command file .. 66	
10.4	Run MMB ... 66	
10.5	Analyze the conformational coverage ... 66	

11	 EXERCISE 7: SOLVE PROTEIN STRUCTURE BY NMR CONSTRAINTS 69	

11.1	 Objectives ... 69	
11.2	 Instructions .. 69	
11.3	Results .. 73	

12	 EXERCISE 8: FITTING TO ELECTRON DENSITY MAPS 74	

12.1	Objectives ... 74	
12.2	Introduction ... 74	
12.3	Run MMB ... 75	
12.4	The command file .. 76	
12.5	View the results .. 77	
12.6	On your own ... 78	

13	 EXERCISE 9: SPIRAL GENOME TRACING FOR VIRAL DNA DENSITY
MAPS .. 79	

13.1	Objectives ... 79	
13.2	A simple example, no computing of density fitting energy, no optimization: 81	
13.3	Challenge: optimize geometric parameters ... 83	
13.4	Going atomistic ... 84	

14	 VIRTUAL ASSEMBLY OF A PROTEIN-DNA COMPLEX 88	

14.1	Objectives .. 88	
14.2	Introduction .. 88	
14.3	Run MMB .. 88	

viii

14.4	The command file .. 89	
14.5	View the results ... 91	

14.5.1	 Symmetry expansion with PyMOL .. 91	
14.5.2	 Symmetry expansion using other tools ... 92	

9

1 Overview

MMB constructs 3D structural and dynamical models of RNA and protein by applying user-
specified base pairing interactions, interatomic forces, sterics, bond mobilities, and structural
constraints. The forces, constraints, mobilities, parameters, and molecules can change from
one simulation stage to another. It uses multi-resolution techniques, such as coarse-grained
force fields and selective rigidification of groups of atoms, to decrease computation time.

MMB is run from the command line and requires a user-provided input parameter file that
specifies the simulation, and optionally an input structural coordinate file in PDB format. It
produces trajectory files, also in PDB format.

MMB was written in C++ code using Simbody and its molecular modeling extension,
Molmodel. There are several ways to get MMB. If you are on a Debian flavor of Linux, you can
install MMB using apt (see https://installati.one/install-mmb-ubuntu-22-04/). For most
others, it is easiest to use docker to pull an mmb image from dockerhub (you can pull a named
distribution, e.g. samuelflores/mmb-ubuntu:4.0.0, or the very latest build,
samuelflores/mmb-ubuntu). An MMB 3.4 executable is available for Windows (see separate
mini-tutorial document which is included with that distribution). Older binaries are available
for Intel-based Mac, and Linux. The source code is also freely available on github.

For a summary of what is new in this release, and for citation info, please see the Reference
Guide.

11

2 Prerequisites and
installation instructions

The examples in this tutorial generate results which should be interpreted with a molecular
viewer such as Pymol, VMD, or Chimera. You will of course need the MMB executable and
auxiliary files.

1. VMD (or another software for viewing trajectory files): We have experienced

some problems installing VMD 1.8.7 on Windows. VMD 1.8.6 or Pymol can also be
used.

To install VMD, go to http://www.ks.uiuc.edu/Research/vmd. Click on "Download
VMD" and select the installation for your platform. Follow the on-line instructions for
installing.

2. MMB: MMB is a tool for building 3D RNA and protein models using a variety of

knowledge the user has about the structure. It runs from the command line (don’t
expect a graphical interface!) and requires a user-generated input file and an MMB
parameter file (more details below). The main output of MMB is the trajectory it
generates from the provided parameters, in PDB format. The last frame of the
trajectory is also saved as a PDB file.

Previously we supported binary downloads, hosted at
http://simtk.org/home/rnatoolbox. But you will see that we are now mostly relying
on Docker images for newer releases. Before long on Debian flavors of Linux you will
be able to install MMB with the package manager. The multiple ways of installing
might make the instructions a bit confusing. In this chapter I explain some of the ways

PREREQUISITES AND INSTALLATION INSTRUCTIONS

12

to install, and during the rest of the tutorial I will just tell you to issue “MMB” and you
will be expected to adjust that according to your installation method.

Windows:
Michal Maly has created a wonderful MMB 3.4 binary release, see the separate mini-
tutorial in that distribution. You can download the much older
Installer.2_14.Windows.zip from SimTK.org. Find it in Windows Explorer (a

Windows Explorer window probably opened automatically when you downloaded the
package). Right-click on Installer.2_14.Windows.zip and click on “Extract

to the specified folder” in the mouse menu. In the “Destination path,”

type “C:\Users\Installer.2_14.Windows”, or some other path of your choice.

Don’t extract it in “Program Files,” because on some Windows flavors this directory
does not allow writing output files.

I actually recommend using Docker for Windows instead. See the instructions for
Linux below.

Mac OSX:
Here again I would recommend docker. However there are a few older Mac binaries
on SimTK.org. If you want to use those, download the one you want, e.g.
Installer.2_18.OSX.tgz. Move this file to another location – we suggest your

home directory, in mac that would be /Users/[your-user-name] , in Linux that

would be /home/[your-user-name], or you can just use the Linux/Unix shortcut

“~”; that’s what we will do in this tutorial.

Now, open a Terminal window. You will find the Terminal application in:
Macintosh HD -> Applications -> Utilities -> Terminal
You will now decompress the above file. In Terminal, issue:

cd ~

tar -zxvf Installer.2_18.OSX.tgz

 PREREQUISITES AND INSTALLATION INSTRUCTIONS

13

The files will be decompressed into the ~/Installer.2_14.[OSX | Ubuntu]

directory.

Now, you just need to tell OSX where to find the library files. That’s easy, all the MMB
files are in the same directory. You can specify this in your ~/.bash_profile or

wherever you put your configuration file, or just do it manually every time you run
MMB. In bash the command is:

export DYLD_LIBRARY_PATH=/Users/[your-user-

name]/Installer.2_18.OSX/lib

export LD_LIBRARY_PATH=/home/[your-user-

name]/Installer.2_18.Ubuntu/lib

Note that you will have to adjust the above depending on where you installed MMB.
Note also that you can’t use the “~” shortcut in your .bash_profile .

Make sure you issue source ~/.bash_profile if you went that route. Now you’re

ready to go!

Some people have reported trouble with Docker on Mac, so I can’t be sure that this
would work for you. However if you can make it work that would be ideal. In that case
install Docker and see the Linux instructions below.

Linux (64 Bit):

MMB is being packaged for Debian (including Ubuntu) so on those systems you will
soon (perhaps by the time you read this) be able to install MMB with apt-get.

In the meantime, I would strongly recommend Docker if you are on Linux. Here you
could issue the executable as:

docker run -v $(pwd):/work -it samuelflores/mmb-ubuntu3.2 MMB

PREREQUISITES AND INSTALLATION INSTRUCTIONS

14

If that seems awkward you can make a little bash script, e.g. in /usr/local/bin/MMB,
containing:

#!/bin/bash

docker run -v $(pwd):/work -it samuelflores/mmb-ubuntu3.2 MMB

$@

You would thenceforth just issue “MMB” to execute MMB. The –v flag is telling docker

to mount the current directory inside your docker image, so you will be able to read
and write in your current directory just as with any normal command. Do not try to
reference any input files above your current directory though. Just copy everything you
need to your current directory.

There are also older binaries still available on simtk.org. The Mac instructions above
will also work for you if you want to go that route.

15

3 Exercise 0: Your first
MMB run

3.1 Objectives

This first exercise is intended for you to:

• Learn how to invoke MMB

• Verify that your installation is working properly

• Learn how to visualize the M-generated trajectory within VMD

3.2 Verify you have the required files

MMB requires two files in order to run:

• parameters.csv: This is a parameter file, analogous to those used by molecular
dynamics programs to set bond, stretch, bend, torsion, etc. parameters. One of the
main differences is that the parameters.csv specifies the rotation and translation
relating the glycosidic nitrogen atoms in interacting pairs of bases. Casual users are
unlikely to modify this file.

On Windows, this file should have been copied from the latest examples folder into
your MMB folder.

If you are using the docker image, a parameters.csv will automatically be copied into
your current directory.

• An input file: This text file specifies the sequence, base pairs, and any other
constraints, forces, and options that should be applied. In this exercise, we will use
commands.singlebasepair.dat.

EXERCISE 0: YOUR FIRST MMB RUN

16

Verify that you have these two files in your MMB folder. If you are using binaries, the
default/recommended locations for your MMB folder are:

 (Mac OSX) ~/Installer.2_18.OSX
(Linux) ~/Installer.2_18.Ubuntu

3.3 Open a command prompt/terminal window

MMB is run from the command prompt/terminal/console. If you haven’t already done so, to
launch a command prompt/terminal window, select:

(Windows) If you are using docker, see the docker literature and follow the Linux
instructions once you are in your docker session. For 3.4, see the windows mini-tutorial. For
older binaries you can open a command prompt. Start -> All Programs -> Accessories ->
Command Prompt
(Mac OS) Macintosh HD -> Applications -> Utilities -> Terminal
(Linux) Open the Console that comes with your distribution.

3.4 Navigate to your MMB folder

For these exercises, we will be running MMB from the MMB folder. It is possible to run MMB
from other directories, but the directory must contain the parameters.csv parameter file.

Within the command prompt/terminal window/console, navigate to the MMB folder. If you
installed in the default locations, you would type:

 (Mac OSX) cd ~/Installer.2_18.OSX

(Linux) cd ~/Installer.2_18.Ubuntu

 Run MMB

17

Note: Quotation marks are required in specifying directory paths within the Windows
command prompt window if the directory path includes spaces.

3.5 Run MMB

To run MMB, type:

 (Mac OS) ./MMB -C commands.singlebasepair.dat

 (Linux) ./MMB -C commands.singlebasepair.dat

If you are using Docker or installed with the package manager, adjust accordingly.

For OSX, you have a choice of executables depending on what version you’re using. The –c

option specifies the input file name, in this case commands.singlebasepair.dat.

Note: If you do not specify the –C option, MMB uses a default input file name of

commands.dat.

You should see output that looks something like this:

[TwoTransformForces.cpp] Satisfied contacts : 0 out of : 1

Writing structure for reporting interval # 1

[TwoTransformForces.cpp] Satisfied contacts : 0 out of : 1

Writing structure for reporting interval # 2

[TwoTransformForces.cpp] Satisfied contacts : 0 out of : 1

Writing structure for reporting interval # 3

...

EXERCISE 0: YOUR FIRST MMB RUN

18

If instead you see messages like the following:

/Users/Sam/svn/RNAToolbox/trunk/src/ParameterReader.cpp:2312 Unable
to open command file: commands.singlebasepair.dat

MMB could not find the input file you specified (in this case commands.singlebasepair.dat).
Make sure you spelled the file name correctly and that it exists in the directory from which
you are calling MMB.

3.6 Visualize MMB results

MMB generates a number of files that by default are saved to the directory from which you
ran MMB. You should see a last.1.cif file and a trajectory.1.cif file. last.1.cif is the PDB file
for the last frame in the trajectory, which is typically the most interesting for structure
prediction. The entire trajectory is saved in NMR format in the file trajectory.1.cif.

We can visualize the resulting trajectory within VMD:

1. Launch VMD. If you installed VMD in typical locations, you would select:

(Windows) Start -> All Programs -> University of Illinois -> VMD -> VMD 1.8.7
(Mac OS) Macintosh HD -> Applications -> VMD
(Linux) The location may depend on your distribution.

2. The “VMD Main” window will appear. Select:

 File -> New Molecule…

 Visualize MMB results

19

3. In the “Molecule File Browser” that appears, click on “Browse” and select the
trajectory.1.cif created by MMB.

4. Change the molecule representation by going to the “VMD Main” window and

selecting:
Graphics -> Representations

From the drop-down menu for “Drawing Method,” select “Licorice.” (In VMD 1.8.7,
you might want to try the “New Cartoon” method, which provides a nice visualization
of the molecule).

5. You should see a structure like that shown below by the end of the trajectory (the

“Licorice” drawing method was used). In this simple example, a single base pair was
specified pulling the two ends together.

To rotate the structure, click and drag the structure. To translate the structure, type t

and then click and drag the structure. To return to rotating the structure, type r.

EXERCISE 0: YOUR FIRST MMB RUN

20

21

4 Exercise 1: Generating
your first 3D model

4.1 Objectives

In Exercise 1, you will:

• Learn about some of the key parameters that need to be specified within the command
file

• Use your new knowledge about MMB to build a GNRA tetraloop from a starting
sequence and published geometric constraints

4.2 Examining and editing the input parameters file

To edit or create and input parameters files, you must use a text editor (NOT a program like
Microsoft Word, which will add many hidden characters for formatting, etc.) For Windows,
we recommend using WordPad (Start -> All Programs -> Accessories -> WordPad). On
Mac, some options include vi, emacs, and TextEdit (Macintosh HD -> Applications ->
TextEdit.app).

Start your text editor and open up the file commands.hairpin-short.dat, located in your
MMB “examples” folder. The default locations for your MMB folder are:

(Windows) My Computer -> C: -> Users -> Installer.2_14.Windows
 (Mac OSX) ~/Installer.2_18.OSX
(Linux) ~/Installer.2_18.Ubuntu

If you are using Docker, you can start the container and fetch it from there:

docker run -v $(pwd):/work -it samuelflores/mmb-ubuntu

cp /github/MMB/examples/commands.hairpin-short.dat .

EXERCISE 1: GENERATING YOUR FIRST 3D MODEL

22

exit

After you exit the container you will see the “commands.hairpin-short.dat” is in your

current directory.

The syntax of the input parameters file is that each row contains information about one
particular parameter. The first word in the row is the name of the parameter, followed by
one or more values needed to specify that parameter.

4.2.1 RNA and protein sequence commands

The first section of the commands.hairpin-short.dat file contains the sequence parameters,
described below. The baseInteraction records (discussed later) must appear sometime

after the firstResidueNumber of each interacting chain in the base pair has been

specified. firstResidueNumber must appear sometime after the corresponding

sequence has been specified. Other than that, the order in which parameters are listed

usually does not matter, except in some advanced usages not covered in this tutorial.

RNA A 2656 UACGUAAGUA

To instantiate a biopolymer, use RNA , DNA
or Protein command. This takes the
following parameters: chain ID (string,
single character long), first residue number
(integer), and sequence (string, single letter
code).
This example instantiates an RNA chain
with chain identifier "A", first residue
number 2656, and the sequence shown in
single-letter code. The chain identifier
should be a single character in compliance
with the PDB format. The sequence can be
quite long, dependent mostly on your
available memory. If you are supplying an
input PDB structure file, the coordinates
will be matched according to the chain ID
and residue number.

4.2.2 Stage parameters

MMB can divide up the simulation into stages, each with its own set of simulation
parameters. This allows flexibility in how the simulation is performed. Stages are explained

 Examining and editing the input parameters file

23

in more detail in Exercise 2. In this exercise, we will not be dividing up the simulation into
stages, so the first stage and the last stage are the same:

firstStage 1
lastStage 1

This starts the simulation at stage 1, and ends when stage 1 is over.

Run parameters

The next section of the commands.hairpin-short.dat file specifies the run parameters,
which control the bookkeeping aspects of the MMB simulation.

4.2.2.1 baseInteractionScaleFactor

The baseInteractionScaleFactor (alias forceMultiplier,

twoTranformForceMultiplier) is a scaling factor applied to the baseInteraction

forces and energies. The base pairing forces themselves are applied using the following
scheme.

First, an attachment frame is generated which is part of the first residue’s glycosidic
nitrogen body, but located outside it. Then a body frame is generated which is located at the
center of the second residue’s glycosidic nitrogen. The body frame’s x-axis points along the
glycosidic bond, and its z-axis is perpendicular to its base plane. The location and
orientation of the attachment frame is such that when it is aligned with the second residue’s
body frame the desired base pairing geometry is attained. Thus the task of parameterizing
the MMB force field is firstly that of determining the correct position and orientation of the
attachment frame. We distribute a program to compute this given the coordinates of a base
pair with the desired geometry, but will not cover its use in this tutorial. After this is done
one must also determine the depth of the potential well and its range – again beyond the
scope of this tutorial.

EXERCISE 1: GENERATING YOUR FIRST 3D MODEL

24

In this exercise, baseInteractionScaleFactor was set to 20, to make the forces strong

enough for convergence:

baseInteractionScaleFactor 200

Note that it is not good idea to make the force multiplier too strong, because this will make
the system stiff, which means there will be fast oscillations which will in turn require the
variable time step integrator to take small time steps. If the
baseInteractionScaleFactor parameter is not specified, it defaults to 1.

4.2.2.1 reportingInterval

This parameter controls the frequency of trajectory frames (reporting intervals) written by
MMB.

reportingInterval 4.0

This instructs MMB to output a trajectory
frame for every 4.0 ps of simulation time,
starting at time 0

 Examining and editing the input parameters file

25

4.2.2.2 numReportingIntervals

This parameter controls the number of such frames written by MMB at a single stage.
Clearly, simulation time = numReportingIntervals * reportingInterval .

numReportingIntervals 10

This instructs MMB to write 10 frames at
the applicable stage.

4.2.3 Temperature

In the commands.hairpin-short.dat file, the temperature parameter is specified:

temperature 10.0

This sets the temperature of the simulation
to 10.0

If setTemperature is set to TRUE, as it is by default, MMB uses one of several available
thermostat algorithms (set by thermostatType, which defaults to NoseHoover) to hold
the system temperature to this setpoint. Note that thermostats do not conserve system
energy.

4.2.4 Base pairing and nucleic acid duplex force commands

To generate base pairing forces to form the stem you can use the command:

nucleicAcidDuplex <chain identifier A>
<first residue on A>
<last residue on A>
<chain identifier B>
<first residue on B>
<last residue on B>

Recalling that the duplex is antiparallel, we require that:
(first residue on A) < (last residue on A)

and
(first residue on B) > (last residue on B)

In the commands.hairpin-short.dat file, you will see an example of this:

EXERCISE 1: GENERATING YOUR FIRST 3D MODEL

26

nucleicAcidDuplex A 2656 2658 A 2665 2663

You can also specify the base pairing forces explicitly and individually. The syntax is:

baseInteraction <chain identifier for first residue>
<residue number for first residue>
<interacting edge for first residue>
<chain identifier for second residue>
<residue number for second residue>
<interacting edge for second residue>
<glycosidic bond orientation>

You can create the three base pairing forces above in this alternative way:,
baseInteraction A 2658 WatsonCrick A 2663 WatsonCrick Cis
baseInteraction A 2657 WatsonCrick A 2664 WatsonCrick Cis
baseInteraction A 2656 WatsonCrick A 2665 WatsonCrick Cis

The first line specifies an interaction between the Watson-Crick edges of residues 2658 and

2663 of chain A, with the glycosidic bonds in the Cis orientation. See Appendix: Forces for

an explanation of this type of interaction. See the same appendix for the other supported
combinations of base pairing parameters.

When MMB sees three or more WatsonCrick/WatsonCrick/Cis interactions applied to

three consecutive residues on each of two strands, it will automatically apply stacking
interactions (HelicalStackingA3/HelicalStackingA5/Cis) to the consecutive

residues (in this case 2656-2657, 2657-2658, 2663-2664, and 2664-2665). Thus

the total number of baseInteraction’s in the system is 3+4 = 7. MMB monitors how

many of these are approximately satisfied at each reporting interval, as you will see.

 Examining and editing the input parameters file

27

4.2.4.1 Using stages

MMB divides the simulation into stages, each with its own set of simulation parameters. The
first stage is run using information solely from the input parameters file. Since there is no
structure, all biopolymers are instantiated as extended chains. The last structure in this stage
is written out to the file last.1.cif. This last.1.cif is the starting structure for stage 2 of the
simulation. Similarly, at the end of stage 2, the file last.2.cif is written out and used as the
starting structure for stage 3. This process repeats for as many stages as specified.

Note that we can use this to start MMB using any PDB structure file. In the above explanation,
firstStage was set to 1, but there’s nothing stopping us from setting it to a higher stage

and reading in an arbitrary structure file, as follows:

1. Renaming the desired PDB file to last.1.cif. Make sure the chain ID and residue
numbering in the PDB file match that in the command file.

2. Setting the parameter firstStage to 2

3. lastStage would also need to be greater than or equal to 2

EXERCISE 1: GENERATING YOUR FIRST 3D MODEL

28

But let’s not do that now! It will be part of a future exercise.
For now, we will use stages to change our simulation parameters, as we explain next.

4.2.4.2 Turning any parameter into a staged parameter

Any parameters or commands can be enclosed in readAtStage … readBlockEnd
tags. This means that the enclosed parameters will be read only for the specified stage. So if
you want to read certain values for parameter1, parameter2, etc only during stages 3, do this:

readAtStage 3
parameter1 value1
parameter2 value2
…
readBlockEnd

You can have as many of these blocks as you wish, and use them to change the parameters at
many stages. There are some other block markers which behave differently (e.g.
readFromStage, readToStage, readUntilStage, readExceptAtStage), see the
Reference guide. Also, there are a few nuances to keep track of. The input file is read from
top to bottom. Parameters encountered more than once in the input file are overwritten with
the one closer to the bottom of the file prevailing. Commands (e.g. baseInteraction), on
the other hand, are additive, rather overwriting each other. See also Appendix: Forces.

In this tutorial the first stage is very short – we are creating a hairpin without concern for
steric clashes:

reportingInterval 4.0
numReportingIntervals 10

So we are specifying that at stage 1, we will run for 10 reporting intervals. Note that total
simulation time = numReportingIntervals*reportingInterval .. so for stage 1
simulation time is 40 ps.

4.2.5 Global simulation parameters

The next section of the commands.hairpin-short.dat file specifies global simulation
parameters, properties that apply to the overall simulation.

numReportingIntervals 10

This determines how many frames are
generated. In this case, 10 intervals are
requested, resulting in 11 frames (if we
count last.1.cif as the 11th) representing a
40-ps simulation.

 Examining and editing the input parameters file

29

4.2.6 Turning on the MD force field

You will see the following macro in your input file:
setDefaultMDParameters

This turns on all the PARM99 force field terms (except GBSA). It’s equivalent to setting the
following parameters:
globalAmberImproperTorsionScaleFactor 1

globalBondBendScaleFactor 1

globalBondStretchScaleFactor 1

globalBondTorsionScaleFactor 1

globalCoulombScaleFactor 1

globalVdwScaleFactor 1

globalGbsaScaleFactor 0

.
You can verify for yourself that these parameters and values appear in the stdout.

4.2.6.1 Run example

In your command prompt/terminal window (see Exercise 0), type:

(Windows) dir

(Mac OS, Linux) ls

You will see a list of files in your current directory. Make sure you have commands.hairpin-
short.dat and parameters.csv. If not, navigate to the directory with these files (see Exercise
0).

Now, run this example by typing:

 (Mac OS) ./MMB -C commands.hairpin-short.dat

(Linux) ./MMB -C commands.hairpin-short.dat

EXERCISE 1: GENERATING YOUR FIRST 3D MODEL

30

The trajectory from this simulation run is in trajectory.1.cif. The “1” in the output file name
is the stage number. This trajectory can be loaded into and visualized with VMD (see Exercise
0. Make sure you first restart VMD or delete the molecule you loaded in that exercise). By the
end of the trajectory, you should see a structure like that shown below. Notice how the 3 base
pairs at the ends of the chain have been enforced to produce the hairpin structure.

 Objectives

31

5 Exercise 1B: Generating
your first 3D model,
modern way with NtC’s

5.1 Objectives

This version of exercise 1 uses Nucleotide Conformers, which yield much better results,
particularly with regard to helices. In this exercise, you will:

• Learn about some of the key parameters that need to be specified within the command
file

• Learn about Nucleotide Conformers (NtC’s)

• Use your new knowledge about MMB to build a GNRA tetraloop from a starting
sequence and published geometric constraints

5.2 Examining and editing the input parameters file

To edit or create and input parameters files, you must use a text editor (NOT a program like
Microsoft Word, which will add many hidden characters for formatting, etc.) For Windows,
we recommend using WordPad (Start -> All Programs -> Accessories -> WordPad). On
Mac, some options include vi, emacs, and TextEdit (Macintosh HD -> Applications ->
TextEdit.app).

Start your text editor and open up the file commands.GNRA-NtC.dat, located in your MMB

folder. The default locations for your MMB folder are:

(Windows) My Computer -> C: -> Users -> Installer.2_14.Windows
 (Mac OSX) ~/Installer.2_18.OSX
(Linux) ~/Installer.2_18.Ubuntu

EXERCISE 1B: GENERATING YOUR FIRST 3D MODEL, MODERN WAY WITH NTC’S

32

The syntax of the input parameters file is that each row contains information about one
particular parameter. The first word in the row is the name of the parameter, followed by
one or more values needed to specify that parameter.

5.2.1 RNA and protein sequence commands

The first section of the commands.GNRA-NtC.dat file contains the sequence parameters,

described below. The baseInteraction records (discussed later) must appear sometime

after the firstResidueNumber of each interacting chain in the base pair has been

specified. firstResidueNumber must appear sometime after the corresponding

sequence has been specified. Other than that, the order in which parameters are listed

usually does not matter, except in some advanced usages not covered in this tutorial.

RNA A 1 UACGUAAGUA

To instantiate a biopolymer, use RNA , DNA
or Protein command. This takes the
following parameters: chain ID (string,
single character long), first residue number
(integer), and sequence (string, single letter
code).
This example instantiates an RNA chain
with chain identifier "A", first residue
number 1, and the sequence shown in
single-letter code. An experimental
structure of this is PDB ID 5MRC, namely
the stretch starting withresidue 2639. The
chain identifier should be a single character
in compliance with the PDB format. The
sequence can be quite long, dependent
mostly on your available memory. If you
are supplying an input PDB structure file,
the coordinates will be matched according
to the chain ID and residue number.

5.2.2 Stage parameters

MMB can divide up the simulation into stages, each with its own set of simulation
parameters. This allows flexibility in how the simulation is performed. Stages are explained
in more detail in Exercise 2. In this exercise, we will not be dividing up the simulation into
stages, so the first stage and the last stage are the same:

firstStage 1

 Examining and editing the input parameters file

33

lastStage 1

This starts the simulation at stage 1, and ends when stage 1 is over.

Run parameters

The next section of the commands.GNRA-NtC.dat
 file specifies the run parameters, which control the bookkeeping aspects of the MMB
simulation.

5.2.2.1 forceMultiplier

The forceMultiplier (alias twoTranformForceMultiplier,

baseInteractionScaleFactor) is a scaling factor applied to the baseInteraction

forces and energies. The base pairing forces themselves are applied using the following
scheme.

First, an attachment frame is generated which is part of the first residue’s glycosidic
nitrogen body, but located outside it. Then a body frame is generated which is located at the
center of the second residue’s glycosidic nitrogen. The body frame’s x-axis points along the
glycosidic bond, and its z-axis is perpendicular to its base plane. The location and
orientation of the attachment frame is such that when it is aligned with the second residue’s
body frame the desired base pairing geometry is attained. Thus the task of parameterizing
the MMB force field is firstly that of determining the correct position and orientation of the
attachment frame. We distribute a program to compute this given the coordinates of a base
pair with the desired geometry, but will not cover its use in this tutorial. After this is done
one must also determine the depth of the potential well and its range – again beyond the
scope of this tutorial.

EXERCISE 1B: GENERATING YOUR FIRST 3D MODEL, MODERN WAY WITH NTC’S

34

In this exercise, baseInteractionScaleFactor was set to 20, to make the forces strong

enough for convergence:

baseInteractionScaleFactor 200

Note that it is not good idea to make the force multiplier too strong, because this will make
the system stiff, which means there will be fast oscillations which will in turn require the
variable time step integrator to take small time steps. If the
baseInteractionScaleFactor parameter is not specified, it defaults to 1.

5.2.2.2 reportingInterval

This parameter controls the frequency of trajectory frames (reporting intervals) written by
MMB.

reportingInterval 3.0

This instructs MMB to output a trajectory
frame for every 4.0 ps of simulation time,
starting at time 0

 Examining and editing the input parameters file

35

5.2.2.3 numReportingIntervals

This parameter controls the number of such frames written by MMB at a single stage.
Clearly, simulation time = numReportingIntervals * reportingInterval .

numReportingIntervals 6

This instructs MMB to write 10 frames at
the applicable stage.

5.2.3 Temperature

In the commands.hairpin-short.dat file, the temperature parameter is specified:

temperature 10.0

This sets the temperature of the simulation
to 10.0

If setTemperature is set to TRUE, as it is by default, MMB uses one of several available
thermostat algorithms (set by thermostatType, which defaults to NoseHoover) to hold
the system temperature to this setpoint. Note that thermostats do not conserve system
energy.

5.2.4 Base pairing and nucleic acid duplex force commands

To generate base pairing forces to form the stem you can use the command:

nucleicAcidDuplex <chain identifier A>
<first residue on A>
<last residue on A>
<chain identifier B>
<first residue on B>
<last residue on B>

Recalling that the duplex is antiparallel, we require that:
(first residue on A) < (last residue on A)

and
(first residue on B) > (last residue on B)

In the commands.GNRA-NtC.dat file, you will see an example of this:

EXERCISE 1B: GENERATING YOUR FIRST 3D MODEL, MODERN WAY WITH NTC’S

36

nucleicAcidDuplex A 1 3 A 10 8

You can also specify the base pairing forces explicitly and individually. The syntax is:

baseInteraction <chain identifier for first residue>
<residue number for first residue>
<interacting edge for first residue>
<chain identifier for second residue>
<residue number for second residue>
<interacting edge for second residue>
<glycosidic bond orientation>

You can create the three base pairing forces above in this alternative way:,
baseInteraction A 1 WatsonCrick A 10 WatsonCrick Cis
baseInteraction A 2 WatsonCrick A 9 WatsonCrick Cis
baseInteraction A 3 WatsonCrick A 8 WatsonCrick Cis

The first line specifies an interaction between the Watson-Crick edges of residues 2658 and

2663 of chain A, with the glycosidic bonds in the Cis orientation. See Appendix: Forces for

an explanation of this type of interaction. See the same appendix for the other supported
combinations of base pairing parameters.

When MMB sees three or more WatsonCrick/WatsonCrick/Cis interactions applied to

three consecutive residues on each of two strands, it will automatically apply stacking
interactions (HelicalStackingA3/HelicalStackingA5/Cis) to the consecutive

residues (in this case 1-2, 2-3, 8-9, and 9-10). Thus the total number of

baseInteraction’s in the system is 3+4 = 7. Except that in this exercise we are turning

off the automated helical stacking. Anyway MMB monitors how many of these are
approximately satisfied at each reporting interval, as you will see.

 Examining and editing the input parameters file

37

5.2.4.1 Using stages

MMB divides the simulation into stages, each with its own set of simulation parameters. The
first stage is run using information solely from the input parameters file. Since there is no
structure, all biopolymers are instantiated as extended chains. The last structure in this stage
is written out to the file last.1.cif. This last.1.cif is the starting structure for stage 2 of the
simulation. Similarly, at the end of stage 2, the file last.2.cif is written out and used as the
starting structure for stage 3. This process repeats for as many stages as specified.

Note that we can use this to start MMB using any PDB structure file. In the above explanation,
firstStage was set to 1, but there’s nothing stopping us from setting it to a higher stage

and reading in an arbitrary structure file, as follows:

4. Renaming the desired PDB file to last.1.cif. Make sure the chain ID and residue
numbering in the PDB file match that in the command file.

5. Setting the parameter firstStage to 2

6. lastStage would also need to be greater than or equal to 2

EXERCISE 1B: GENERATING YOUR FIRST 3D MODEL, MODERN WAY WITH NTC’S

38

But let’s not do that now! It will be part of a future exercise.
For now, we will use stages to change our simulation parameters, as we explain next.

5.2.4.2 Turning any parameter into a staged parameter

Any parameters or commands can be enclosed in readAtStage … readBlockEnd
tags. This means that the enclosed parameters will be read only for the specified stage. So if
you want to read certain values for parameter1, parameter2, etc only during stages 3, do this:

readAtStage 3
parameter1 value1
parameter2 value2
…
readBlockEnd

You can have as many of these blocks as you wish, and use them to change the parameters at
many stages. There are some other block markers which behave differently (e.g.
readFromStage, readToStage, readUntilStage, readExceptAtStage), see the
Reference guide. Also, there are a few nuances to keep track of. The input file is read from
top to bottom. Parameters encountered more than once in the input file are overwritten with
the one closer to the bottom of the file prevailing. Commands (e.g. baseInteraction), on
the other hand, are additive, rather overwriting each other. See also Appendix: Forces.

In this tutorial the first stage is very short – we are creating a hairpin without concern for
steric clashes:

reportingInterval 3.0
numReportingIntervals 6

So we are specifying that at stage 1, we will run for 10 reporting intervals. Note that total
simulation time = numReportingIntervals*reportingInterval .. so for stage 1
simulation time is 18 ps.

5.2.5 Global simulation parameters

The next section of the commands.hairpin-short.dat file specifies global simulation
parameters, properties that apply to the overall simulation.

numReportingIntervals 6

This determines how many frames are
generated. In this case, 10 intervals are
requested, resulting in 11 frames (if we
count last.1.cif as the 11th) representing a
40-ps simulation.

 Examining and editing the input parameters file

39

5.2.6 Turning on the MD force field

You will see the following macro in your input file:
setDefaultMDParameters

This turns on all the PARM99 force field terms (except GBSA) as explained before.

5.2.7 Turning OFF the old-style stacking parameters, and using NtCs

We used to use baseInteraction’s to impose the correct stacking geometry in helices. These got
applied automatically whenever three or more WatsonCrick base pairs were imposed in a row.
Let’s turn that off:

setHelicalStacking False

Now there is a more modern and effective way to do this, by restraining the backbone for
consecutive pairs of nucleic acid residues. NtC class AA00 is the most populated class,
corresponding to A-form helices. Let’s impose those on the three base pairs in the helix,
starting with the first stretch:

NtC A 1 2 AA00 .5

NtC A 2 3 AA00 .5

Actually for a continuous stretch you can just use a single command for the whole stretch, like
this:

NtC A 1 3 AA00 .5

And also on the complementary stretch:

NtC A 8 10 AA00 .5

5.2.7.1 Making the GNRA tetraloop

trajectory.1.cif should have a nicely folded stem. However you may note that the tetraloop
“GUAA” meets the GNRA profile, so we can fold it into a GNRA tetraloop.

EXERCISE 1B: GENERATING YOUR FIRST 3D MODEL, MODERN WAY WITH NTC’S

40

We do that at stage 2, enclosing the relevant commands in a block:

readAtStage 2

First we create a “sheared” or Hoogsteen/Sugar Edge/Trans interaction to “staple” the ends
of the tetraloop:

baseInteraction A 2645 Hoogsteen A 2642 SugarEdge Trans

Next we need to stack a few residues. The A-form helical stacking parameters work OK for
this:

NtC A 1 3 AA00 0.5

NtC A 8 10 AA00 0.5

And then we close the block:

readBlockEnd

5.2.7.2 Run example

In your command prompt/terminal window (see Exercise 0), type:

(Windows) dir

(Mac OS, Linux) ls

You will see a list of files in your current directory. Make sure you have commands.hairpin-
short.dat and parameters.csv. If not, navigate to the directory with these files (see Exercise
0).

Now, run this example by issuing e.g.:

 Examining and editing the input parameters file

41

 (Mac OS) MMB -C commands.GNRA-NtC.dat

(Linux) MMB -C commands.GNRA-NtC.dat

The trajectory from this simulation run is in trajectory.1.cif. The “1” in the output file name
refers to the fact that the results are from stage 1. This trajectory can be loaded into and
visualized with VMD (see Exercise 0. Make sure you first restart VMD or delete the molecule
you loaded in that exercise). By the end of the trajectory, you should see a structure like that
shown below. Notice how the 3 base pairs at the ends of the chain have been enforced to
produce the hairpin structure.

EXERCISE 2: READING STRUCTURES FROM A PDB FILE AND RIGIDIFYING PARTS OF YOUR

MODEL

42

6 Exercise 2: Reading
structures from a PDB file
and rigidifying parts of
your model

6.1 Objectives

In this exercise, you will:

• Learn how to use stages to read in and simulate a structure from a PDB file

• Learn about two new types of constraints that can be applied to your model: Weld and
Rigid

• Experiment to see what happens when you release these constraints

In your MMB folder, you should see the following files: 1ARJ.short.cif and
commands.TAR.dat. If you do not see them, make sure you are in your MMB folder (see
Exercise 0). Also recall that you can fetch it from your docker image “examples” directory as
explained in Exercise 0.

1ARJ.short.cif is the file that we want MMB to read in, so let’s copy it to a file named last.1.cif.
In your command prompt/terminal window, type:

(Windows) copy 1ARJ.short.cif last.1.cif

(Mac OS, Linux) cp 1ARJ.short.cif last.1.cif

Now, let’s look at the input parameters file. Open commands.TAR.dat in your text editor.
Notice that firstStage and lastStage are both set to 2. Notice also that sequence and

firstResidueNumber are set to match that of the TAR molecule. (You can compare the

 Rigid mobilizers and Weld constraints

43

values for these parameters with the PDB entry for 1ARJ at
http://www.pdb.org/pdb/explore/remediatedSequence.do?structureId=1ARJ).

6.2 Rigid mobilizers and Weld constraints

MMB allows you to (1) fix a chain to ground, (2) weld two residues to each other, and (3)
rigidify continuous stretches of residues.

(1) is useful for instances when you are not interested in the overall rotation and translation
of a molecule, or when you expect that the 5’ end would be fixed in an experimental situation.
(2) is often useful when two strands of a helix have been made rigid and now need to be fixed
with respect to each other, or to fix the ends of a flexible loop to each other. (3) can be used,
for example, to rigidify regions of a molecule to focus resources on a small region of interest,
or to model the motion of domains about a flexible hinge.

Note that while (3) almost always saves computer time, (1) and (2) may actually increase it.
The reason for this is that rigidification involves Rigid mobilizers, but welding specifies Weld
constraints. The latter create constraint equations which must then be satisfied, while the
former simply prevent internal degrees of freedom from being created in the first place. See
the Simbody literature (http://simtk.org/home/simtkcore and look under “Documents”) for
details on this. Also note that there are many more ways to control the bond mobilities in M,
which we will not discuss in this tutorial.

The following parameter settings in the commands.TAR.dat show how to set up these
different types of rigidification. Refer to the diagram on the next page for the residue
numbering.

removeRigidBodyMomentum False

By default, MMB removes the rigid body
momenta and keeps the system center of
mass at the origin. While this is useful to
prevent the system from spinning or
drifting, it is not compatible with
constraints to Ground, so we will turn it off
for this simulation.

constrainToGround N 17

This command fixes the C3’ atom of the
specified residue (here chain N, residue 17)
to the ground frame. See Appendix: Forces

EXERCISE 2: READING STRUCTURES FROM A PDB FILE AND RIGIDIFYING PARTS OF YOUR

MODEL

44

for an alternative command.

mobilizer Rigid N 17 21
mobilizer Rigid N 41 45

These two lines rigidify helix I except for
the base pair adjacent to the bulge
(residues 17 to 21 and residues 41 to 45).

mobilizer Rigid N 27 38 The stretch of residues from 27 to 38 (most
of helix II plus the loop) are rigidified.

constraint N 17 Weld N 45 This line welds the two ends (residues 17
and 45) together.

constraintTolerance .001 This line controls the fidelity with which
Rigid and Weld constraints are enforced. A
value of .001 means that all internal
coordinates must be fixed within .001
nanometers or radians, depending on
whether they are distances or angles.

6.3 SelectedAtoms

We use a syntactical variation of the contact command introduced in Exercise 1. Here we

use the SelectedAtoms scheme, and also specify the residue range explicitly:

contact SelectedAtoms N FirstResidue LastResidue

 Run example

45

Where FirstResidue and LastResidue are self explanatory – but we could just as easily

have given residue numbers (including any insertion codes) explicitly – see the Reference
guide.

These parameters you’ve encountered before:

numReportingIntervals 200
reportingInterval 2.0
firstStage 2
lastStage 2
temperature 10.0

6.4 Run example

Make sure you are still in the directory with the commands.TAR.dat and the parameters.csv
files. To do this, in your command prompt/terminal window (see Exercise 0), type:

(Windows) dir

(Mac OS, Linux) ls

You will see a list of files in your current directory. Make sure you have commands.TAR.dat
and parameters.csv. If not, navigate to the directory with these files (see Exercise 0).

Now, run this example by typing:

(Windows) MMB.2_14.exe -C commands.TAR.dat

(Mac OS) ./MMB -C commands.TAR.dat

(Linux) ./MMB -C commands.TAR.dat

The trajectory from this simulation run is in trajectory.2.cif file. Note the “2” in the file name.
Since the first stage in this run was “2,” the corresponding output has a tag of “2” in its file
name. Load this trajectory into VMD (see Exercise 0). During the trajectory, you should
notice that one part of the structure is rigid and the other part is flexible.

EXERCISE 2: READING STRUCTURES FROM A PDB FILE AND RIGIDIFYING PARTS OF YOUR

MODEL

46

6.5 On your own: Determine the effects of the Weld
constraints and rigidification

Try holding the helices together with just base pairing forces rather than constraints. This is
a matter of removing the lines specifying the Weld constraints and rigidification. Does the
domain structure change much?

6.6 On your own: Turn the RNA into a different 3D structure

Change the sequence and/or constraints and turn the RNA into a different 3D structure, e.g.,
a hairpin or a pseudoknot.

47

7 Exercise 3: Homology

modeling Azoarcus to
Tetrahymena Ribozyme
P6ab

7.1 Objectives

In this exercise, you will:

• Learn how to use MMB to construct a model using a known RNA structure as a
template (this process is known as homology modeling)

• Practice using the AllHeavyAtomSterics collision detecting spheres (optional)

• Turn on MD forces using setDefaultMDParameters

• Learn how to use alignmentForces

7.2 Specifying the template

The template is the known RNA structure.

7.2.1 Read in the PDB file for the template

You will need to read in the PDB file for this RNA (see Exercise 2). In this exercise, you will
be using the 1GID.shifted.cif file.

In your examples folder, you should see the following files: 1GID.shifted.cif and
commands.P6ab-threading.dat (see Exercise 0).

EXERCISE 3: HOMOLOGY MODELING AZOARCUS TO TETRAHYMENA RIBOZYME P6AB

48

Copy 1GID.shifted.cif to last.1.cif by typing the following in your command prompt/terminal
window:

(Windows) copy 1GID.shifted.cif last.1.cif

(Mac OS, Linux) cp 1GID.shifted.cif last.1.cif

Open up commands.P6ab-threading.dat in a text editor. Verify that firstStage is set to 2

so that the provided PDB file is read in and used by MMB.

7.2.2 Specify template sequence to match information in the PDB file

In the input parameters file, you will also need to specify a template sequence with a chain ID
and residue numbering that matches that of the PDB file. If you open the file 1GID.shifted.cif
in a text editor, you will see that the first residue is numbered “220” and has a chain ID of “Q.”
So, in the command file, you would include the following line:

RNA Q 220 GUCCUAAGUCAACAGAUCUUCUGUUGAUAUGGAU

7.2.3 Rigidify the template

Lastly, you need to rigidify your template molecule so that it does not move. The threaded
chain is the one that will morph so that it matches the template. In this example, the following
line would rigidify the template (Tetrahymena ribozyme P6ab):

mobilizer Rigid Q 220 253

7.3 Specify the sequence of the target chain
The target chain is the one being mapped onto a known structure. For the Azoarcus fragment,
this is done with the following line:

RNA C 146 CCUAAGGCAAACGCUAUGG

 EXERCISE 3: HOMOLOGY MODELING Azoarcus TO TETRAHYMENA RIBOZYME

P6AB

49

7.3.1 Account for sterics using “Physics where you want it”

We can use the PARM99 potential to prevent steric clashes and spread out the loop nicely.
This turns on the Lennard-Jones and electrostatic terms, in addition to the bonded terms
(which are on by default):

setDefaultMDParameters

Then we limit the MD forces to the target chain only:

includeResidues C FirstResidue LastResidue

Without this line, the template would also have non-bonded forces active, and would repel the
threaded chain. In the original (Flores et al., RNA 2010) article, we used the contact

command, you will see a note on this in the input file:

#contact AllHeavyAtomSterics C 146 164

This is faster, but can be a bit limited in preventing steric clashes, and won’t have the long-
range electrostatic repulsion that we find useful in this exercise.

7.4 Apply forces to pull the corresponding residues together

The alignmentForces keyword is explained in the Reference Guide, in our chapter on

“Forces.” Also see our chapter on homology modeling of proteins, in this Tutorial.

First, specify that all subsequent alignmentForces commands will be performed with a
prohibitive gap penalty, effectively restricting us to ungapped alignments:

 alignmentForces gapPenalty -10000

Now we set the force constant of all the atomSpring’s:

EXERCISE 3: HOMOLOGY MODELING AZOARCUS TO TETRAHYMENA RIBOZYME P6AB

50

 alignmentForces forceConstant 300.0

Lastly, let’s issue the actual alignment commands:

alignmentForces C 146 151 Q 222 227

alignmentForces C 160 164 Q 247 251

In the first line above we are asking for residues 146-150 of the model (“C”) to be aligned with
residues 222 to 300 of the template (“Q”). For each pair of corresponding residues, this
command looks for all (non-hydrogen) atoms in the first residue which have atoms with the
same name in the corresponding second residue. It then applies a spring to pull those two
atoms together. The spring has an adjustable force constant, which we earlier set to 300.

7.5 Run example

Make sure you are still in the directory with the commands.P6ab-threading.dat and the
parameters.csv files. To do this, in your command prompt/terminal window (see Exercise
0), type:

(Windows) dir

(Mac OS, Linux) ls

You will see a list of files in your current directory. Make sure you have commands.P6ab-
threading.dat and parameters.csv. If not, navigate to the directory with these files (see
Exercise 0).

Now, run this example by typing:

(Linux) MMB -C commands.P6ab-threading.dat

 EXERCISE 3: HOMOLOGY MODELING Azoarcus TO TETRAHYMENA RIBOZYME

P6AB

51

The trajectory from this simulation run is in trajectory.2.cif file. Load this trajectory into
VMD (see Exercise 0). At the beginning of the trajectory, you should see two distinct
structures. Eventually, you should see one end of the Azoarcus fragment appear to attach
itself to the Tetrahymena fragment and then gradually “thread” the rest of itself onto
Tetrahymena. At the end of the trajectory, you will get a structure like that shown below,
where the Tetrahymena template structure is in green and the Azoarcus target fragment is in
blue. Notice that we did the homology modeling even though there are portions of Azoarcus
that do not match to any parts of Tetrahymena; we dealt with this by only applying forces to
corresponding bases, and leaving the rest alone.

EXERCISE 4: PROTEIN HOMOLOGY MODELING

52

8 Exercise 4: Protein
homology modeling

8.1 Objectives

In this exercise, you will:

• Learn how to create protein chains

• Practice using the AllHeavyAtomSterics contact force

• Use the threading forces for protein chains

8.2 Specifying the template

The template is the known protein structure.

8.2.1 Provide the PDB file for the template

You will need to read in the PDB file for this RNA (see Exercise 2). In this exercise, you will
be using the protein-template.cif file.

In your Installation folder, you should see the following files: protein-template.cif and
commands.protein-homology-modeling.dat. If you do not see them, make sure you are in
your installation folder (see Exercise 0).

Copy protein-template.cif to last.1.cif by typing the following in your command
prompt/terminal window:

(Windows) copy protein-template.cif last.1.cif

(Mac OS, Linux) cp protein-template.cif last.1.cif

 EXERCISE 4: PROTEIN HOMOLOGY modeling

53

Open up commands.protein-homology-modeling.dat in a text editor. Verify that
firstStage is set to 2 so that the provided PDB file is read in and used by MMB. There

are a some reporting and simulation parameters which you’re by now familiar with, and we’ll
skip the explanation of those.

8.2.2 Start the run

 MMB –c commands.protein-homology-modeling.dat

Note that the last Windows release was 2.14. Windows users will therefore find that the
tutorial does not exactly follow the contents of their command files. I actually hate Windows.
There, I’ve said it! Anyway try the Docker image.

8.2.3 Specify template sequence to match information in the PDB file

In the command file, you will need to specify a template sequence with a chain ID and residue
numbering that matches that of the PDB file. If you open the file protein-template.cif in a text
editor, you will see that the first residue is numbered “94” and has a chain ID of “E.” So, in
the command file, we have the following line:

protein E 94 CYDYDAIPWLQNVEPNLRPKLLLKHNLFLLDNIVKPIIAFYYKPIKTLNGHEIKFIRKEEYIS

8.2.4 Specify model sequence, for which no structural information is
available

You will also need to specify a model sequence with a chain ID (here we use “H” as a mnemonic
for “human”) and residue numbering which should probably follow some biological
convention. We got our sequence from the telomerase database (telomerase.asu.edu):

protein H 522 RSPGVGCVPAAEHRLREEILAKFLHWLMSVYVVELLRSFFYVTETTFQKNRLFFYRKSVE

8.2.5 Rigidify the template and constrain it to ground

You will need to rigidify the template, but not leave the model flexible. You might also want
to constrain the template to ground, though that’s a matter of taste. Anyway, you know how
to do this:

EXERCISE 4: PROTEIN HOMOLOGY MODELING

54

mobilizer Rigid E 94 156

constrainToGround E 94

8.2.6 Globally align the model and template (with gaps)

Lastly, we will pull the model backbone into structural alignment with the template backbone
based on sequence identity.

The syntax of the alignmentForces is in our chapter on “Forces” in the Reference Guide. In a
nutshell, this is a utility that aligns sequences, and applies atomSpring forces between
likenamed atoms in corresponding residues under that alignment. The alignmentForces
keyword admits parameters or commands. Parameters apply to commands that are below that
parameter in the input file, but not to any commands that are above it. So let’s set the
parameters for the alignment first. Start with the force constant for the atomSpring’s:

 alignmentForces forceConstant 300

We want to allow gaps, so we leave the alignmentForces gapPenalty at the default (do nothing
about this).

Next we tell it which chains need to be globally aligned:

alignmentForces H E

In the above we are using alignmentForces as a command, and passing two arguments – the
chain IDs to be aligned. Global alignments have a high potential to be crappy locally, so make
sure you check the alignment. This is explained in the Reference Guide but at the risk of being
redundant -- search for “SeqAn sequence alignment follows:” in the (admittedly) verbose
output. You may see something like this:

55 –RSPGVGCVPAAEHRLREEILAKFLHWLMSVYVVELLRSFFYVTETTFQ
 | || | | | | | | |
 CYDYDAIPWLQNVEPNLRPKLLLKHNLFLLD-NIVKPIIAFYYKPIKTLN
50 . : KNRLFFYRKSV---
 | ||
 GHEIKFIRKEEYIS

 EXERCISE 4: PROTEIN HOMOLOGY modeling

55

where “-“ are deletions, and “|” are perfect matches.

8.2.7 Globally align (no gaps)

If you are not happy with this gapped alignment you can specify an ungapped alignment, by
setting alignmentForces gapPenalty to a very negative value. Then we can also specify
fragments (residue ranges) to be aligned:

#alignmentForces H 524 543 E 96 115
#alignmentForces H 544 580 E 117 153

In the first line above we are asking for residues 524-543 of the model (“H”) to be aligned with
residues 96 to 115 of the template (“E”). Similarly, chain H 544-580 vs. chain E 117-153. How
do we know that these residue stretches should align? From the sequence alignment (again,
telomerase.asu.edu). There is a single-residue insertion in chain E -- residue 116.
Correspondingly, we do not align this residue with any on chain H. .. And we’re done! The
output should look something like this:

EXERCISE 4: PROTEIN HOMOLOGY MODELING

56

Where the template is in green and the model is in blue.

57

9 Exercise 5: Protein
morphing

9.1 Objectives

Using what you learned earlier, you will learn to generate a putative trajectory between two
known conformations of a macromolecule, a technique known as morphing. This will give
you practice in:

• Using the alignmentForce command (for a slightly different purpose).

• Using the loadSequencesFromPdb command.

• Using the mobilizer command.

• Using the readAtStage .. readBlockEnd conditional blocks.

• Adjusting the reportingInterval

9.2 Introduction
We will morph Glutamine Binding Protein (GlnBP), a molecule somewhat larger than any
we’ve worked with up to now. GlnBP is a domain hinge bending protein, meaning that it has
stable structural domains connected by a flexible hinge. We will take advantage of this
property by rigidifying the two domains of the model for time savings. This will get the model
most of the way towards the target molecule. As an exercise, in a final stage you will leave the
model flexible to complete the morph. You will see that this exercise is like the preceding
homology modeling exercise, with one key difference: in morphing, not only the target’s, but
also the model’s initial atomic coordinates are known.
Morphing is an old technique, and many good servers (e.g. molmovdb.org) and programs are
available. You will see that selective rigidification offers the advantage of speed. In published
work, we have morphed the entire ribosome, including all 50 protein subunits, in about 2.5
hours of computer time. Using MMB also gives you more control over precisely how the
morph is done. The price of all this is that the process is bit more manual, but you will learn
how to do it here.

EXERCISE 5: PROTEIN MORPHING

58

9.3 Preparing the input structure file
In the previous exercise, we copied the coordinates into last.1.cif. However that was a little
kludgy. We can just specify the name of the file that has the structures we want. Recall that
stage 1 does not take any input structures. So we start at stage 2:

readAtStage 2
Template, 1WDN
loadSequencesFromPdb 1WDN.short.cif
Model, 1GGG
loadSequencesFromPdb 1GGG.short.cif
readBlockEnd

MMB will find a chain “B” in 1WDN.short.cif, and a chain “A” in 1GGG.short.cif. There are
actually ways to deal with chain naming conflicts, but for now just verify that we are not
duplicating chain IDs.

9.4 Start the run

Start the job as usual:

MMB –c commands.protein-morphing.dat

9.5 Examine the input file

As in the previous exercise, we have two chains. However in contrast with the homology
modeling example, here both chains are structured. The “model”, chain A, has flexibility
limited to the hinges and will be aligned with a fully rigid template chain B:

Chain B has some residues at the N- and C-termini which don’t exist on chain A. However you
can verify that residue A 5 corresponds to B 5, and so on all the way to residue 224. So we will
pull those residues together like this:

alignmentForces gapPenalty -10000
alignmentForces A 5 224 B 5 224

 EXERCISE 5: PROTEIN MORPHING

59

We will be doing this in two stages – one for rigid body alignment and another for semi-rigid
morphing, as we will explain:

firstStage 2

lastStage 3

Initially we will use a reportingInterval of 10 ps, but you may reduce this later.

reportingInterval 10.0

numReportingIntervals 25

We will be constraining residues to ground later, so let’s keep turn off the rigid body momentum
removal:

removeRigidBodyMomentum false

The target molecule will be rigid throughout this exercise. The model will have some of the
flexibility given back later. But we start by fully rigidifying both chains. The following syntax, with
no chain IDs, tells MMB that it applies to all chains:

mobilizer Rigid

9.5.1.1 Turning any parameter into a staged parameter

Any parameters or commands can be enclosed in readAtStage … readBlockEnd
tags. This means that the enclosed parameters will be read only for the specified stage. So if you
want to read certain values for parameter1, parameter2, etc only during stages 3, do this:

readAtStage 3
parameter1 value1
parameter2 value2
…
readBlockEnd

EXERCISE 5: PROTEIN MORPHING

60

You can have as many of these blocks as you wish, and use them to change the parameters at
many stages. There are some other block markers which behave differently (e.g.
readFromStage, readToStage, readUntilStage, readExceptAtStage), see the
Reference guide. Also, there are a few nuances to keep track of. The input file is read from top
to bottom. Parameters encountered more than once in the input file are overwritten with the one
closer to the bottom of the file prevailing. Commands (e.g. baseInteraction), on the other
hand, are additive, rather overwriting each other. See also Appendix: Forces.

Our first task is to rigidly align the model and target, since they start out spatially quite separated.
We will do this at stage 2, using the readAtStage command just introduced. At this stage, the

model will be completely rigid:

Rigid alignment stage
readAtStage 2

We turn off the electrostatics and Lennard-Jones forces for both chains. We have to turn them
off in any case at least for the template, because otherwise we would not be able to superimpose
the model on it:

deactivatePhysics A
deactivatePhysics B

We already specified alignmentForces, so not much else to do :

This stage is short, will converge after 60 ps or so:
reportingInterval 10.0
numReportingIntervals 6
ReadBlockEnd

Then at stage 3 we will do the semiflexible morphing.

readAtStage 3
reportingInterval 1.0
numReportingIntervals 25

 EXERCISE 5: PROTEIN MORPHING

61

We know from published work that there is a hinge at residues 88-89 and 181-183. So we rigidify
the thus-defined structural domains, and constrain one of them to the ground:

Flexibilize just the hinges on your model:
mobilizer Default A 87+1 90-1
mobilizer Default A 180+1 184-1

Note that MMB can do +/- arithmetic.

Next we have to constrain the fragments that belong to the same structural domain. Otherwise
the domain would fall apart:

The N- and C-termini are in the same, discontinuous domain.

Constrain them to each other, otherwise the domain would fall apart:
constraint A FirstResidue Weld A LastResidue

Next turn on the electrostatic and LJ interactions, for a zone 0.7 nm in radius around all flexible
residues (in our case that means hinge residues). All residues outside this zone feel no such
interactions. In the case of chain A residues, this is just a computational economy measure:

setDefaultMDParameters
physicsRadius .7

Remember we said the interactions have to be turned off all the time for the template chain. It is
just a “ghost”, the alignmentForces are pulling A onto B, but otherwise A does not interact with
B:

Turn off physics for the template chain:
deactivatePhysics B
readBlockEnd

EXERCISE 5: PROTEIN MORPHING

62

Stages 2 and 3 should be done by now. Open trajectory.2.cif and trajectory.3.cif in your molecular
viewer. You should see something like the following:

Left: Model (blue) and target (gold) in their initial, separated positions. Center: Model and target
rigidly aligned. Right: Model semiflexibly aligned with target.

9.6 On your own: complete the morph with a fully-flexible
alignment

You will notice that at the end of stage 3, the model is not fully aligned with the target. In this
exercise, you will make the model fully flexible. You should end up with something like the image
below.

Hints:
1. You will need to do this at stage 4.
2. Check that the model is fully flexible.
3. The simulation will be slower now, so reduce the reporting interval by ~ 10X.

 EXERCISE 5: PROTEIN MORPHING

63

65

10 Exercise 6: Efficiently
generate alternate protein
conformations

10.1 Objectives

In exercise 2 you learned how to use rigidification, randomizeInitialVelocities, and

sterics to do thermal exploration of RNA conformations. In this exercise you will do the same
for protein. Specifically this will teach you:

• The ProteinBackboneSterics sterics type arameter

• An efficient way to generate alternate conformations of proteins.

• Doing alignments and RMSD calculations in VMD

10.2 Introduction
There are many reasons to generate alternate conformations of proteins. Maybe you want to
make an ensemble for protein-protein or protein – small molecule docking. Maybe you are
trying to elucidate functional mechanisms. In any case, generating alternate conformations
is often done by randomly moving atoms, or by using normal modes. These methods do not
conserve the correct domain structure. For many hinge bending proteins, domain structure is
conserved throughout the motion to some degree. In this exercise, you will find the alternate
conformations that are possible under the assumption that only the hinge residues are flexible.
You will use the ProteinBackboneSterics scheme, in which only the N, Cα, and C atoms

get collision detecting spheres, to avoid generating clashing structures.

66

10.3 The command file
Open the file commands.GlnBP-thermal-exploration.dat. Most of the contents will

be familiar to you. You haven’t used this sterics parameter before:

contact ProteinBackboneSterics A 1 220

The hinge residues are 89-90 and 180-182:

mobilizer Rigid A 1 88

mobilizer Rigid A 91 179

mobilizer Rigid A 183 220

The first and third fragments comprise a discontinuous domain that we will fix to ground:

constrainToGround A 1

constrainToGround A 220

Leaving the second domain all the motion permitted by the hinge (and sterics).

10.4 Run MMB

Copy 1GGG.short.cif to last.1.cif . The former is an open form of Glutamine Binding

Protein (GlnBP).

Now run MMB against the command file, e.g.:
./MMB –c commands.GlnBP-thermal-exploration.dat
./MMB –c commands.GlnBP-thermal-exploration.dat

This will create a trajectory.2.cif .

10.5 Analyze the conformational coverage

67

The idea behind a thermal exploration of this nature is that your ensemble may contain an
alternate conformation which exists under certain conditions. You would not know this
alternate conformation in a practical situation, so to have more confidence that your sampling
is reasonably comprehensive, you might see how often the trajectory returns to its initial
conformation, within perhaps 2Å RMSD or so. Actually we calculate this RMSD only over the
mobile domain (in our case residues 87 to 175), a quantity Ruben Abagyan calls sRMSD. You
can easily calculate this sRMSD using VMD. A sample script follows:

loop a variable i from 1 to 269:

for {set i 1} {$i < 269} {incr i} {

select residues 91 to 179 of the reference structure (frame 0, or

the starting conformation). “atomselect 0” means choose the first

(in this case, the only) trajectory that is loaded in VMD. Put this

structure in a variable called sel0:

set sel0 [atomselect 0 "resid 91 to 179" frame 0];

create a selection set (sel1) consisting of the same domain in frame

i :

set sel1 [atomselect 0 "resid 91 to 179" frame $i];

compute the RMSD between sel0 and sel1 :

set my_rmsd [measure rmsd $sel0 $sel1] ;

print the RMSD :

puts $my_rmsd

end the loop:

}

You can put this script in a file and read it in. It’s pretty easy just to dump it as a single line
into the TK console (Extensions -> TK Console), like this:

for {set i 1} {$i < 269} {incr i } { set sel0 [atomselect 0 " resid

91 to 179 " frame 0]; set sel1 [atomselect 0 " resid 91 to 179 "

frame $i]; set my_rmsd [measure rmsd $sel0 $sel1] ; puts $my_rmsd }

You will get a stream of sRMSD numbers. Cut and paste these into your favorite spreadsheet.
You should be able to make a graph like this:

68

Note the sRMSD dips below 5Å a couple of times. You can run this longer if you are not
convinced you’ve gotten good sampling. You can also compare this to the closed structure
(PDB ID: 1WDN). That requires some aligning and careful definition of sel0 and sel1.

 Exercise 7: Solve protein structure by NMR constraints

69

11 Exercise 7: Solve protein
structure by NMR
constraints

11.1 Objectives

You've learned a lot so far. You’ve learned how to do everyday modeling tasks such as
morphing, conformational sampling, and homology modeling. You learned how to turn base
pairing contacts into 3D structure of RNA. I will progressively make things more challenging
for you. In this chapter you will learn how to turn distance constraints, such as can be obtained
from NMR experiments, into 3D structure with a little help from the Amber99 force field. This
will involve the following tasks:

• Use the atomTether command

• Turn a list of distance constraints into MMB commands

• Turn on the Amber99 force field for the entire system

11.2 Instructions
You are reasonably far along now, so you don’t need detailed instructions for everything –
thus I’ll skip a few basic steps. You will need to turn on all terms of the force field:

globalAmberImproperTorsionScaleFactor 1

globalBondBendScaleFactor 1

globalBondStretchScaleFactor 1

globalBondTorsionScaleFactor 1

70

globalCoulombScaleFactor 1

globalVdwScaleFactor 1

In this exercise we are turning on physics everywhere. So you can just leave
physicsWhereYouWantIt at the default value, or set it explicitly:

physicsWhereYouWantIt FALSE

You might want to use a temperature that leads to some oscillation about equilibrium:

temperature 100

You will also need the sequence. You can extract it from 1UAO.short.cif using the

extract_FASTA.awk script.

Lastly, you will want to add the distance constraints. Let’s say you know that on chain A, atom
2HA of residue 1 is at most .45nm from atom HE3 of residue 9. The way you would enforce
that is:

atomTether A 1 2HA A 9 HE3 .4500 300.00

where the last (optional, defaults to 30 if left out) number specifies the spring constant of a
spring that will pull the two atoms together if they’re more than 4.5Å apart. I suggest making
this 300 for this application, because empirically I’ve found this is strong enough.

Unfortunately the people that made the 1UAO structure didn’t use the PDB atom naming
convention. So we will have to correct the atom names. The following substitutions are
necessary:

Everywhere:
HA2 2HA
HB2 2HB
HG2 2HG
HG21 1HG2

71

HG22 2HG2
HG23 3HG2

Residue 4 only:
HD2 2HD

If you want to skip this hassle, just use 1UAO.atoms-renamed.cif.

I’ve included a list of distance constraints called 1UAO-disre-simple.txt . Try to use it to

generate the atomTether commands. You may find the parse-restraints.pl script

useful.

The parse-restraints.pl script looks like this:

perl ./parse-restraints.pl 1UAO-disre-simple.txt 1UAO.short.cif

#open the restraints file (first argument):

open RESTRAINTS, $ARGV[0] or die $!;

#load restraints into an array:

@restraints = <RESTRAINTS> ;

close (RESTRAINTS);

int r;

#for each restraint:

for ($r = 0; $r < scalar(@restraints); $r++)

{

 #first atom number

 int $i ; $i = substr($restraints[$r],0,3);

 #second atom number

 int $j ; $j = substr($restraints[$r],10,3);

 #distance:

 int $dist ; $dist = substr($restraints[$r],20,5);

 # initialize to “*” so we can later tell if not read

 $atomName1 = "*";

 $atomName2 = "*";

 int $residueNumber1; $residueNumber1 = -1;

72

 int $residueNumber2; $residueNumber2 = -1;

 $chain1 = "A";

 $chain2 = "A";

 #open PDB file (second argument)

 open PDB, $ARGV[1] or die $!;

 #for each line in PDB file:

 while (<PDB>) {

 #parse the atom number

 int $PDBatomNumber; $PDBatomNumber = substr($_,6,5);

 #if first atom number matches an atom number in the PDB file

 if ($PDBatomNumber == $i) {

 # extract atom name, residue number, and chain ID:

 $atomName1 = substr($_,12,4);

 $residueNumber1 = substr($_,22,4);

 $chain1 = substr($_,21,1);

 }

 if ($PDBatomNumber == $j) {

 # extract atom name, residue number, and chain ID:

 $atomName2 = substr($_,12,4);

 $residueNumber2 = substr($_,22,4);

 $chain2 = substr($_,21,1);

 }

 }

#print out MMB atomTether commands:

print "atomTether $chain1 $residueNumber1 $atomName1 $chain2

$residueNumber2 $atomName

2 $dist \n";

}

#done!

You will also need to convert the distances from nm to Å. While you’re add it, set the spring
constant to 300.0.

73

It’s best to make your own MMB input file. But if you just want the right answer, look at the
provided commands.NMR.dat .

11.3 Results
Your structure should agree with the published one (1UAO.short.cif in your MMB

distribution) within about 1.3Å RMSD.

EXERCISE 8: FITTING TO ELECTRON DENSITY MAPS

74

12 Exercise 8: Fitting to
electron density maps

12.1 Objectives

You may have found some of the preceding exercises redundant in some sense, perhaps
repeating in protein what was already done in RNA, etc. Perhaps you could be forgiven for
falling asleep. In this exercise we will do something completely different – fitting atomic
coordinates to electronic density maps, which could have come from a cryo-electron
microscopy (CryoEM), small-angle X-ray scattering, crystallographic, or other experiment.
The skills you picked up in previous lessons about selective rigidification, constraints, forces,
even “Physics where you want it” or straight-out all-atoms force fields will serve you well as
you efficiently build 3D models. The following parameters will be new to you:

• densityForceConstant

• densityFileName

The following command will also be new:

• fitToDensity

If you want a challenge, you can also learn how to extract the sequence (in single-letter code)
from and to renumber the residues in a PDB file. Hopefully you will also gain some insight
into the flexibility of the ribosome.

12.2 Introduction

75

Electron density maps can be produced by cryo-electron microscopy (Cryo-EM), Small Angle
X-ray Scattering (SAXS), X-ray crystallography, and other means. They are an important
source of structural information. However they are hard to interpret without solving for the
nuclear positions. Most of the structures in the PDB were once electronic densities, and have
been fitted with nuclear positions.

There are many fine pieces of software available for fitting 3D structure to density maps. At
Uppsala, “O” is quite popular. I will not attempt a full review of such programs here. Our
approach, however, follows the work of Klaus Schulten, who invented Molecular Dynamics
Flexible Fitting (MDFF). In MDFF, the atoms in the molecule or complex are subject to a
conventional Molecular Dynamics force field, plus an additional force which is proportional
to the atomic mass and the gradient of the electronic density. In MMB, we adapt this force as
follows:

Where i is the atom index, mi is the mass of atom i, is the electronic density at the

nuclear position of atom i, A is a user-adjusted scaling factor, and is the gradient operator.

Accordingly, is the density-derived force vector applied to atom i. This is computed for and

applied to every atom i in the system.
In this exercise, you will specify the sequence of a tRNA molecule, read in an initial set of
nuclear coordinates, read in the density map of the ribosomal hybrid state, and then fit the
tRNA molecule into the density. So let’s get started!

12.3 Run MMB

In a practical situation, preparing a good starting model is an important part of the work. I
used Venki Ramakrishnan’s structure of the T.thermophilus ribosome in the classical state
(2J00, 2J01, 2J02, 2J03), which I then semiflexibly morphed to match Jamie Cate’s “R2”
intermediate structure. You can read all about the why and wherefore in my 2011 paper in
Proceedings of the Pacific Symposium on Biocomputing. Anyway, I took the morphed
structure and re-centered it using COLORES, which is part of the Situs package. This is easier

€

!
f i = A⋅ mi ⋅

!
∇ D(xi,yi,zi)

€

D(xi,yi,zi)

€

!
∇

€

!
f i

76

than it might sound, but you won’t have to do any of it, just use the coordinates in tRNA.cif,

which is in your MMB 2.4 distribution. Issue:

cp tRNA.cif last.1.cif .

Unfortunately this will actually take some time to converge. So start it now, so at least it will
run for a couple of minutes while we finish going through the input file. Issue:

MMB –c commands.tRNA-fitting.dat

Depending on your OS. Note that MMB 2.4.1 has a density fitting algorithm that is a full 10X
faster than MMB 2.4! So make sure you are using at least MMB 2.4.1 for this exercise.

12.4 The command file

We first instantiate a tRNA molecule:

RNA V 5 CGCGGGAUGGAGCAGCCUGGUAGCUCGUCGGGCUCAUAACCCGAAGGUCGUCGGUCAAAUCCGGCCCCCGCAA

If you don’t have the commands.tRNA-fitting.dat file, you can extract the sequence

from a structure file that contains only the tRNA, using e.g. awk –f extract-FASTA.awk

<PDB file> . You will find extract-FASTA.awk in your 2.4.1 distribution.

Next we rigidify the tRNA fully:

mobilizer Rigid

We have to turn off the rigid body momentum remover, since this would always be trying to
recenter the molecules:

removeRigidBodyMomentum false

As you recall from our definition of above, the scaling factor A is user-adjustable. In the

command file, A is called densityForceConstant. Make this factor too small, and the

€

!
f i

77

fitting will take forever. Make it too big, and the molecule might fly out into deep space. Turns
out it’s probably best to leave it at the default value of unity:

densityForceConstant 1.00

Now we specify the name of the electron density file, which has to be in XPLOR format:

densityFileName ./tRNA.xplor

Then we activate the density-based force field for chain V:

fitToDensity V

Note that we could just as easily have issued:

fitToDensity V FirstResidue LastResidue

(which does exactly the same thing), or:

fitToDensity

(which fits all chains in the system, which in this case is also the same thing)

..I just wanted to make sure you understand the polymorphism of this command.

The rest of the parameters will be familiar to you.

temperature 1

numReportingIntervals 100

reportingInterval .01

firstStage 2

lastStage 2

12.5 View the results

78

VMD can display density maps. So read in tRNA.xplor. I rendered this using “Solid

surface.” Then read trajectory.2.cif as a new molecule. You should be able to watch the tRNA
move into its corresponding density. It should look something like this:

12.6 On your own

We just fitted the P/E site tRNA into the tRNA density map. If you want to fit a bigger subunit,
try 16S. You can download the emd_1315 density map and fit the 16S from 2AVY (provided,
or get from the PDB). You will need to extract the sequence of this subunit, and make
everything but the neck region Rigid. You may consider the neck region to consist of residues

903 and 1373. Make sure you Weld together fragments of any discontinuous domain.

 Exercise 9: Spiral genome tracing for viral DNA density maps

79

13 Exercise 9: Spiral genome
tracing for viral DNA
density maps

13.1 Objectives

For most viruses, determining the structure of the genome is a significant challenge. First, the
resolution may be low. Second, even if the resolution is relatively good, the genome maybe
thousands, tens of thousands, or even more base pairs long, so if you are trying to use
traditional fitting software you may be facing months of full-time work not to mention
excruciating eyestrain. However large regions of many viral genomes follow spherical- or
cylindrical-spiral geometry. For these cases I have created the spiral genome tracing feature.

The figure below summarizes the process. There are two geometries that are currently
supported: sphere and cylinder. Spirals have the property that consecutive windings are

equidistant at closest approach – much like real DNA, which for physical reasons has a
preferred interhelical distance. To make a coarse grained model of the DNA, we place one
atom to represent each base pair, along the spiral trace. Of course we lose accuracy by using
only one atom to represent the entire base pair. However we gain accuracy in that we can
evaluate the fitting energy for the entire spiral at once. To understand why this is, consider the
pitch parameter. A given trace could fit the observed density map perfectly at the beginning

of the spiral, but if the pitch is off even by tenths of an Ångström, it will be completely wrong

by the time it gets to the other side of the virus. Thus the ideal value of this parameter will be
very clear from monitoring the fitting energy as we vary the pitch. You can set up a loop to

sweep a parameter over a given range, and each consecutive evaluation will add only seconds
to your compute time (reading in the density map takes a bit longer than that, but needs be
done only once). When you are satisfied with the parameters, MMB can write out a command

EXERCISE 9: SPIRAL GENOME TRACING FOR VIRAL DNA DENSITY MAPS

80

file. Run that file, and the output will be an atomistic model, with each coarse-grained atom
now replaced by one all-atom base pair.

The command that is new to you is spiralDNA. It should always be followed by the

subcommand “writeCommands” or any of the following parameters:

• chainID

• center

• radius

• geometry

• cylinderHeight

• pitch

• helixAdvancePerBasePair

• spiralIsRightHanded

• startTheta

• endTheta

• phiOffset

• frequencyPhaseAmplitude

• spiralPdbFileName

• spiralCommandsFileName

 Exercise 9: Spiral genome tracing for viral DNA density maps

81

These are all explained in the “Spiral genome tracing” chapter of the MMB Reference Guide.
Please stop reading this tutorial and read that chapter now.

13.2 A simple example, no computing of density fitting energy,
no optimization:

The command file we will use is called commands.P68-fitting.dat, in your examples

directory. Pop that open with your text editor and follow along.

First, just do this, don’t worry much about the explanation (which is anyway in the command
file):

readPreviousFrameFile 0

numReportingIntervals 1

Do you recall how to employ user variables? Let’s define pi so we can use the more intuitive
degrees and then convert to rads:

@pi 3.14159265358979

We will create a single chain, chain ID Z:

spiralDNA chainID Z

Spiral will be right handed:

spiralDNA spiralIsRightHanded 1

I had to do a bit of fiddling to get some parameters just right, hence the use of arithmetic:

spiralDNA center 31.89 31.89+2.0 31.89

spiralDNA radius 16.3+2.3+(-2)*.05

EXERCISE 9: SPIRAL GENOME TRACING FOR VIRAL DNA DENSITY MAPS

82

The pitch turns out to be pretty constant, across shells:

spiralDNA pitch 2.3

As of course is this:

spiralDNA helixAdvancePerBasePair .34

The north and south pole regions have very poor resolution in this map, so we only trace over
a relatively modest range of theta:

spiralDNA startTheta 1.00

spiralDNA endTheta 2.2

This is a rotational offset, about the polar axis:

spiralDNA phiOffset (16-2)*20*@pi/180

We clear the frequencyPhaseAmplitudeVector, out of paranoia rather than necessity:

spiralDNA frequencyPhaseAmplitude clear

If you want to make an atomistic (fine-grained) model, separately run MMB using this
command file:

spiralDNA spiralCommandsFileName commands.spiral.dat

This is where the fine grained structural coordinates will be written:
spiralDNA spiralPdbFileName spiral.cif

This tells MMB you want to generate the command file, with name specified with
spiralCommandsFileName above:

spiralDNA writeCommands

 Exercise 9: Spiral genome tracing for viral DNA density maps

83

Howe. It is the last spiralDNA command you write, for a given chainID. However if you

define a new spiralDNA chainID, and change any other spiralDNA parameters you

wish, you can issue spiralDNA writeCommands again and an additional chain will be

created.

This is the P68 density map, provided by Dominik Hrevik and Pavel Plevka. Maybe you don’t
need to use it:

#density densityFileName LocalRef_02_Cl02_res85_nocaps2_box.mrc

You can download this from Zenodo (10.5281/zenodo.10036620) or perhaps less-reliably
from http://pe1.scilifelab.se/MMB-annex/examples/ . If you do have that file.. this command
tells MMB you want to compute the fitting energy for the coarse-grained chain Z.

#fitToDensity Z

As a suggestion, vary one of the parameters above (center, radius, pitch, etc) and see which
value gives you the lowest fitting energy. You can just search the stdout for the per-atom
potential energy, you are looking for a string that looks like: "(Use with caution)

totalPotentialEnergy / atom".

13.3 Challenge: optimize geometric parameters

To do this, you will have to have your density map file, specified in densityFileName. In

this exercise, you will vary some parameter, and determine the value of that parameter which
minimizes the fitting energy. I provide no help beyond these hints:

You should set firstStage and lastStage to range over a sufficient number of stages.

Each stage you will evaluate one value of your parameter.
You may find the variable @CURRENTSTAGE useful. MMB sets this to the number of the

current stage.
Then set your parameter using arithmetic and @CURRENTSTAGE.

EXERCISE 9: SPIRAL GENOME TRACING FOR VIRAL DNA DENSITY MAPS

84

13.4 Going atomistic

If you did the example, you will see a file called commands.spiral.dat , in your working

directory. You do not need to do the optimization challenge to get this.

You will need to copy the base-pair.*.cif files into your working directory. You will find those
in MMB’s extras directory. Run MMB using the mentioned command file. It will take a few

minutes. When it is all finished, the last.n.cif file with the highest “n” will contain the

full spiral of DNA.

 Creating synthetic density maps with noise

85

14 Creating synthetic density
maps with noise

14.1 Background and objectives

Your first questions upon seeing this chapter heading might be: what is a synthetic density
map, why in tarnation would I want one, and why would I want it to be noisy? Allow me to
explain. In many practical applications, you will download or receive a density map from your
experimental colleague, who wants you to then build atomic models of macromolecules into
that map. That’s what we did in the prior chapter, on genome tracing for dsDNA viruses.

However methods development is different from an application. Maybe you want to develop
a new method for interpreting density maps. Here you might need to CREATE a dataset of
density maps representing certain molecules. You might do this for a few reasons. First,
because you can be the one to decide what class of molecules you want your method to deal
with. Second, because you want to decide how big the map will be, with what grid spacing.
Third, you might want a large number of such maps. MMB can create such maps, from any
molecule that it can read in or fold. It basically creates a sphere centered on each atom, and
the sphere is represented by some density in each grid point within that sphere, with the
remaining space having zero density.

Such density maps will be nice and clean to look at, you can immediately recognize your
molecule in them. However experimental density maps are not like this. They have varying
degrees of noise – departure from such ideal structure. This could be due to thermal motions
of the molecule in the experiment, biases in the particle picking, problems with image
alignment, insufficient number of molecules, etc. This is where artificial noise generators
come in. These add density in a random fashion to your density map, with the goal of making
synthetic or otherwise high-resolution maps more representative of low-resolution maps you
might encounter in certain applications, for example dsDNA viral genomes.

I am far from the first to write an artificial noise generator, plenty exist. However after playing
with them I decided I was not satisfied they made realistic noise. For the most part I suspected

CREATING SYNTHETIC DENSITY MAPS WITH NOISE

86

it would not be hard to filter out the noise and recover the underlying idealized density. The
most challenging sort of noise has spatial frequency components that are much like those of
the underlying ideal structure.

One very common example of noise is blackbody radiation, which is absolutely everywhere in
the university and in daily life. It explains the spectrum of sunlight, the cosmic background
radiation, the noise in old-style copper-wire telephone lines, and the color of most glowing-
hot objects. Planck explained the spectrum of the sun by postulating that the sun is analogous
to an oven with metal walls. The walls could hold standing-waves of energy (which we now
know to be in the form of photons), with the constraint that their electric field strength would
be zero at the walls. That means that the permitted wavelengths of light would be such that an
integer number of half-wavelengths span the oven from wall to wall. If the oven were very
energetic (high temperature) then very high energy photons could exist, and these would have
very short wavelengths, with many half-wavelengths fitting between the walls. If the oven were
colder, then there would only be enough energy to populate the longest-wavelength
resonances. The additional wrinkle is that there are very few ways to create long-wavelength
photons, but as the wavelengths get shorter there start to be many more possible ways to fit
them in the oven. The upshot is that there are very few photons of the lowest energy (because
there are few such states) and very few photons of the highest energy (because you start to run
out of energy).

To make a long story short, our noise generator considers that the density map volume being
generated is an oven, and creates sinewaves of noise which more or less follow Planck’s law.
Real photons are represented with complex-valued wavefunctions and density maps are real-
valued, so my noise waves have a random phase meaning they don’t go to zero at the volume
boundaries (that’s one non-realistic part). You can choose the temperature, so if you want
“snow” like noise with small grains everywhere, choose a lower temperature, and if you want
big blobs of noise, choose a lower temperature. You can also choose the intensity, which is just
a scaling factor (make it big if you want more noise).

14.2 Load a density map, and add noise

If you set this parameter to any number greater than 0.0000001, you will activate the density
map noise generator:

 Creating synthetic density maps with noise

87

densityNoiseScale <float>

You should also choose a temperature (default is 0 which is probably not want you want, and
it cannot be negative):

densityNoiseTemperature <float>

If you activated the noise generator, you will find in your working directory the following
maps:

noise.xplor : A map showing ONLY the noise

density.xplor: A map showing ONLY the original density map

noisyMap.xplor : A map showing original density PLUS noise

VIRTUAL ASSEMBLY OF A PROTEIN-DNA COMPLEX

88

15 Virtual assembly of a
protein-DNA complex

Contributed by Erik Marklund

15.1 Objectives
Quite often a good experimental structure model for the particular biomolecule that you are
to study is not available under the specific conditions that you demand. For instance, a protein
may have been crystallized with the “wrong” ligand, lacking one or a few domains, etc. In such
cases the combined data from several experiments can still be used to create a reasonable
structure model that can e.g. be used for subsequent molecular dynamics. In this exercise you
will see an example of how an existing protein structure model can be used in conjunction
with sequence data to produce a model of a related protein with maintained protein-ligand
interactions. There are no new commands in this exercise, but the alignment will go beyond
the ordinary use of proteinThreading.

15.2 Introduction
The tetracycline repressor (TetR) regulates the genes for tetracycline resistance in bacteria. It
is a commonly used system for conditional gene expression and has a high affinity for its
operator, tetO. There is a X-ray crystallographic structure of operator-bound TetR class D
(TetRD) in the protein databank (id. 1QPI), but not for the related TetR class B (TetRB). Their
high level of sequence similarity, however, allows for structural alignment of TetRB onto
TetRD to yield a structure model of TetRB. Because of the specific interaction with DNA the
side-chain conformations of the DNA-binding regions require special attention.

15.3 Run MMB
The input structure file (1QPI) requires little preparation. It contains one monomer from a
homodimer and one strand from a double stranded DNA helix. The crystallographic symmetry
found in the pdb file can be used at a later point to generate the homodimer bound to the

 Virtual assembly of a protein-DNA complex

89

double stranded DNA helix. Because of that we will only perform a structural alignment of a
monomer here.

Use the structure model of TetRD as an input file:

cp TetR.cif last.1.cif .

Then execute MMB to do the actual alignment:

./MMB –c commands.TetR_threading_TUT.dat
./MMB –c commands.TetR_threading_TUT.dat

(depending on your OS). This will thread the TetRB polypeptide chain onto the TetRD
structure while maintaining the side chain interactions with DNA.

15.4 The command file
First we set up the environment and instantiate the TetRD and TetRB monomers and the
DNA:

firstStage 2

lastStage 2

reportingInterval 1.0

numReportingIntervals 50

temperature 1.0

removeRigidBodyMomentum false

TetR class D, bound to DNA

protein A 4 LNRESVIDAALELLNETGIDGLTTRKLAQKLGIEQPTLYWHVKNKRALLDALAVEILARHHDYSLPAA...

TetR class B, no structure

protein B 4 LDKSKVINSALELLNEVGIEGLTTRKLAQKLGVEQPTLYWHVKNKRALLDALAVEILARHKDYSLPAA...

DNA

RNA M 1 CCUAUCAAUGAUAGA

RNA N 1 UCUAUCAUUGAUAGG

VIRTUAL ASSEMBLY OF A PROTEIN-DNA COMPLEX

90

Perhaps you notice the high sequence similarity of the regions shown above. The structure of
TetRD has some stretches of residues that were not resolved in the experiment. The TetRB
sequence contains the corresponding residues and has additional insertions that will be part
of the final structure model. This means, however, that care must be taken to align the right
parts of TetRB to TetRD, as there is not a one-to-one mapping of all residues in the two
sequences. The DNA molecules (here instantiated as RNA for technical reasons) are not
necessary for the alignment, but make the final output more comprehensive.

Let’s set up the homology modeling of the backbone:

threading A 4 155 B 4 155 300.0

threading A 156 198 B 169 211 300.0

Here the insertions create a discrepancy between the two sequences in terms of residue
numbering, as discussed previously. The same thing affects the mobilizers that keep most of
the proteins rigid throughout the homology modeling:

mobilizer Rigid A 4 198

mobilizer Rigid B 4 22

mobilizer Rigid B 30 34

mobilizer Rigid B 50 155

mobilizer Rigid B 169 211

mobilizer Rigid M 1 15

mobilizer Rigid N 1 15

The mobilizers above are further complicated by the fact that sidechains that make DNA
interactions can not be kept rigid, or their final conformations will be off with respect to the
DNA. Therefore we have split up one rigid part into several shorter ones.

We anchor TetRD and the DNA to the ground:

constrainToGround A 4

constrainToGround M 1

constrainToGround N 1

 Virtual assembly of a protein-DNA complex

91

15.5 View the results
Fire up your molecular viewer of choice to inspect your new structure model. last.2.cif only
contains the monomeric protein and single stranded DNA. Hence you will need to make use
of the crystallographic symmetry information that is contained in the input structure file.

15.5.1 Symmetry expansion with PyMOL

Copy the CRYST1 record from last.1.cif and the coordinates from last.2.cif to a new file:

grep CRYST last.1.cif > TetRB_threaded.cif

cat last.2.cif >> TetRB_threaded.cif

In PyMOL you can now make a symmetry expansion. Open PyMOL, load the file

TetRB_threaded.cif,	and	execute	symexp:

Load TetRB_threaded.cif

symexp S_, TetRB_threaded, all, 1.5

This generates symmetry related copies of the monomeric protein and DNA locally. Note that
this command is likely to create more copies than you need, so a few newly generated objects
may need to be deleted from the selections/objects panel to the right. Once you have the
homodimer you will be able to see if the inserted loops cause any clashes between the
monomers that may need further processing. As you will see, the inserted loops are nicely
situated in regions that are not occupied by any other atoms, so the entire structure is a
plausible structure model of the TetRB-operator complex

The protein-DNA interface of a structurally aligned TetRB homodimer. The homodimer was
constructed from the monomeric protein and DNA with the help of the symexp command in

PyMOL. Not only is the structure model devoid of side-chain clashes; the specific interactions
with DNA were reconstituted in the homology modeling process.

VIRTUAL ASSEMBLY OF A PROTEIN-DNA COMPLEX

92

15.5.2 Symmetry expansion using other tools

Unfortunately, VMD currently lacks the capability to create the full homodimer directly from
the crystallographic symmetry information contained in the pdb file. There are other tools at
our disposal, however. Examples of such are XPAND (http://xray.bmc.uu.se/usf/) and CCP4
(http://www.ccp4.ac.uk/), both of which are free to use. Unfortunately, neither XPAND nor
CCP4 are guaranteed to work out of the box, but if either of them is already present on your
system you could try to make use of it. Finally, there is a web service – Quat
(http://sysimm.ifrec.osaka-u.ac.jp/pdb_quat/) – that can do expansions according to both
crystallographic and non-crystallographic symmetry. Before submitting your structure to
Quat it is strongly recommended that you remove TetRD from the pdb file! Quat may destroy
the chain labeling, so it’s better to have as few chains as possible before submitting it. For this
reason you may choose to also omit the DNA from the Quat input file since it is already
symmetry expanded. Inspect the structure afterwards to make sure that the symmetry
expansion produced sensible copies!

In principle the symmetry operations can be done in VMD with the help of rotations and
translations, but requires some level of familiarity with the crystallographic space groups. In
this case the other monomer(s) can be generated by rotating all atoms 180 degrees around the
y-axis followed by translation by half a unit cell along the z-axis. This can also be accomplished
by putting your favorite scripting language to good use.

 Virtual assembly of a protein-DNA complex

93

