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1 Overview 
 
MMB constructs 3D structural and dynamical models of RNA and protein by applying user-
specified base pairing interactions, interatomic forces, sterics, bond mobilities, and structural 
constraints. The forces, constraints, mobilities, parameters, and molecules can change from 
one simulation stage to another.  It uses multi-resolution techniques, such as coarse-grained 
force fields and selective rigidification of groups of atoms, to decrease computation time.  
 
MMB is run from the command line and requires a user-provided input parameter file that 
specifies the simulation, and optionally an input structural coordinate file in PDB format.   It 
produces trajectory files, also in PDB format.  
 
MMB was written in C++ code using Simbody and its molecular modeling extension, 
Molmodel. There are several ways to get MMB. If you are on a Debian flavor of Linux, you can 
install MMB using apt (see https://installati.one/install-mmb-ubuntu-22-04/ ). For most 
others, it is easiest to use docker to pull an mmb image from dockerhub (you can pull a named 
distribution, e.g. samuelflores/mmb-ubuntu:4.0.0, or the very latest build, 
samuelflores/mmb-ubuntu). An MMB 3.4 executable is available for Windows (see separate 
mini-tutorial document which is included with that distribution). Older binaries are available 
for Intel-based Mac, and Linux.  The source code is also freely available on github. 
 
For a summary of what is new in this release, and for citation info, please see the Reference 
Guide.   
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2 Prerequisites and 
installation instructions 

 
The examples in this tutorial generate results which should be interpreted with a molecular 
viewer such as Pymol, VMD, or Chimera. You will of course need the MMB executable and 
auxiliary files. 

 
1. VMD (or another software for viewing trajectory files): We have experienced 

some problems installing VMD 1.8.7 on Windows.  VMD 1.8.6 or Pymol can also be 
used. 
 
To install VMD, go to http://www.ks.uiuc.edu/Research/vmd. Click on "Download 
VMD" and select the installation for your platform.  Follow the on-line instructions for 
installing. 
 

 
2. MMB:  MMB is a tool for building 3D RNA and protein models using a variety of 

knowledge the user has about the structure. It runs from the command line (don’t 
expect a graphical interface!) and requires a user-generated input file and an MMB 
parameter file (more details below). The main output of MMB is the trajectory it 
generates from the provided parameters, in PDB format. The last frame of the 
trajectory is also saved as a PDB file.  
 
Previously we supported binary downloads, hosted at  
http://simtk.org/home/rnatoolbox.  But you will see that we are now mostly relying 
on Docker images for newer releases. Before long on Debian flavors of Linux you will 
be able to install MMB with the  package manager. The multiple ways of installing 
might make the instructions a bit confusing. In this chapter I explain some of the ways 
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to install, and during the rest of the tutorial I will just tell you to issue “MMB” and you 
will be expected to adjust that according to your installation method. 
 
Windows:  
Michal Maly has created a wonderful MMB 3.4 binary release, see the separate mini-
tutorial in that distribution. You can download the much older 
Installer.2_14.Windows.zip from SimTK.org.  Find it in Windows Explorer (a 

Windows Explorer window probably opened automatically when you downloaded the 
package).  Right-click on Installer.2_14.Windows.zip and click on “Extract 

to the specified folder” in the mouse menu.  In the “Destination path,” 

type “C:\Users\Installer.2_14.Windows”, or some other path of your choice. 

Don’t extract it in “Program Files,” because on some Windows flavors this directory 
does not allow writing output files. 
 
I actually recommend using Docker for Windows instead.  See the instructions for 
Linux below. 
 
Mac OSX:  
Here again I would recommend docker. However there are a few older Mac binaries 
on SimTK.org. If you want to use those, download the one you want, e.g.  
Installer.2_18.OSX.tgz.  Move this file to another location – we suggest your 

home directory, in mac that would be /Users/[your-user-name] , in Linux that 

would be /home/[your-user-name], or you can just use the Linux/Unix shortcut 

“~”; that’s what we will do in this tutorial. 

 
Now, open a Terminal window.  You will find the Terminal application in:  
Macintosh HD -> Applications -> Utilities -> Terminal  
You will now decompress the above file.  In Terminal,  issue: 
 

cd ~ 

tar -zxvf Installer.2_18.OSX.tgz 
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The files will be decompressed into the ~/Installer.2_14.[OSX | Ubuntu]  

directory. 
 
Now, you just need to tell OSX where to find the library files.  That’s easy, all the MMB 
files are in the same directory.  You can specify this in your ~/.bash_profile or 

wherever you put your configuration file, or just do it manually every time you run 
MMB.   In bash the command is:  
 
export DYLD_LIBRARY_PATH=/Users/[your-user-

name]/Installer.2_18.OSX/lib  

 

export LD_LIBRARY_PATH=/home/[your-user-

name]/Installer.2_18.Ubuntu/lib  
 

Note that you will have to adjust the above depending on where you installed MMB. 
Note also that you can’t use the “~” shortcut in your .bash_profile .  

 
Make sure you issue source ~/.bash_profile if you went that route.  Now you’re 

ready to go! 
 
Some people have reported trouble with Docker on Mac, so I can’t be sure that this 
would work for you. However if you can make it work that would be ideal. In that case 
install Docker and see the Linux instructions below. 
 
Linux (64 Bit):  
 
MMB is being packaged for Debian (including Ubuntu) so on those systems you will 
soon (perhaps by the time you read this) be able to install MMB with apt-get.  
  
In the meantime, I would strongly recommend Docker if you are on Linux. Here you 
could issue the executable as: 
 
docker run -v $(pwd):/work -it samuelflores/mmb-ubuntu3.2 MMB 
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If that seems awkward you can make a little bash script, e.g. in /usr/local/bin/MMB, 
containing: 
 
#!/bin/bash                                            

docker run -v   $(pwd):/work  -it samuelflores/mmb-ubuntu3.2 MMB 

$@ 

 
You would thenceforth just issue “MMB” to execute MMB. The –v flag is telling docker 

to mount the current directory inside your docker image, so you will be able to read 
and write in your current directory just as with any normal command. Do not try to 
reference any input files above your current directory though. Just copy everything you 
need to your current directory. 
 
There are also older binaries still available on simtk.org. The Mac instructions above 
will also work for you if you want to go that route.  



 

15 

 

3 Exercise 0:    Your first 
MMB run 

 

3.1 Objectives 
 
This first exercise is intended for you to: 

• Learn how to invoke MMB  

• Verify that your installation is working properly 

• Learn how to visualize the M-generated trajectory within VMD 
 

3.2 Verify you have the required files 
 
MMB requires two files in order to run: 
 

• parameters.csv:  This is a parameter file, analogous to those used by molecular 
dynamics programs to set bond, stretch, bend, torsion, etc. parameters.  One of the 
main differences is that the parameters.csv  specifies the rotation and translation 
relating the glycosidic nitrogen atoms in interacting pairs of bases.  Casual users are 
unlikely to modify this file.  

 
On Windows, this file should have been copied from the latest examples folder into 
your MMB folder. 
 
If you are using the docker image, a parameters.csv will automatically be copied into 
your current directory. 
 

• An input file:  This text file specifies the sequence, base pairs, and any other 
constraints, forces, and options that should be applied.  In this exercise, we will use 
commands.singlebasepair.dat. 
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Verify that you have these two files in your MMB folder.  If you are using binaries, the 
default/recommended locations for your MMB folder are: 
 

 (Mac OSX)      ~/Installer.2_18.OSX  
(Linux)      ~/Installer.2_18.Ubuntu    
 
 
 

3.3 Open a command prompt/terminal window 
 
MMB is run from the command prompt/terminal/console.  If you haven’t already done so, to 
launch a command prompt/terminal window, select: 
 
(Windows)      If you are using docker, see the docker literature and follow the Linux 
instructions once you are in your docker session. For 3.4, see the windows mini-tutorial. For 
older binaries you can open a command prompt. Start -> All Programs -> Accessories -> 
Command Prompt 
(Mac OS)      Macintosh HD -> Applications -> Utilities -> Terminal 
(Linux)      Open the Console that comes with your distribution. 

 

3.4 Navigate to your MMB folder 
 
For these exercises, we will be running MMB from the MMB folder.  It is possible to run MMB 
from other directories, but the directory must contain the  parameters.csv parameter file.  
 
Within the command prompt/terminal window/console, navigate to the MMB folder.  If you 
installed in the default locations, you would type: 

 

 (Mac OSX)      cd ~/Installer.2_18.OSX 

(Linux)      cd ~/Installer.2_18.Ubuntu  
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Note:  Quotation marks are required in specifying directory paths within the Windows 
command prompt window if the directory path includes spaces. 
 

 
 

3.5 Run MMB  
 
To run MMB, type: 

 

 (Mac OS) ./MMB       -C commands.singlebasepair.dat 

 (Linux)   ./MMB -C commands.singlebasepair.dat 

  

If you are using Docker or installed with the package manager, adjust accordingly.  
 
For OSX, you have a choice of executables depending on what version you’re using. The –c 

option specifies the input file name, in this case commands.singlebasepair.dat.   
 
 
Note:  If you do not specify the –C option, MMB uses a default input file name of 

commands.dat. 
 
 
You should see output that looks something like this: 
 

[TwoTransformForces.cpp] Satisfied contacts   : 0 out of : 1 

Writing structure for reporting interval # 1 

[TwoTransformForces.cpp] Satisfied contacts   : 0 out of : 1 

Writing structure for reporting interval # 2 

[TwoTransformForces.cpp] Satisfied contacts   : 0 out of : 1 

Writing structure for reporting interval # 3 

...  
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If instead you see messages like the following: 
 
/Users/Sam/svn/RNAToolbox/trunk/src/ParameterReader.cpp:2312 Unable 
to open command file: commands.singlebasepair.dat 
 
MMB could not find the input file you specified (in this case commands.singlebasepair.dat).  
Make sure you spelled the file name correctly and that it exists in the directory from which 
you are calling MMB.  
 

3.6 Visualize MMB results 
 
MMB generates a number of files that by default are saved to the directory from which you 
ran MMB.   You should see a last.1.cif file and a trajectory.1.cif file.  last.1.cif is the PDB file 
for the last frame in the trajectory, which is typically the most interesting for structure 
prediction.  The entire trajectory is saved in NMR format in the file trajectory.1.cif. 
 
We can visualize the resulting trajectory within VMD: 

1.  Launch VMD.  If you installed VMD in typical locations, you would select:   
 
(Windows)     Start -> All Programs -> University of Illinois -> VMD -> VMD 1.8.7 
(Mac OS)      Macintosh HD -> Applications -> VMD 
(Linux)      The location may depend on your distribution.  
 
 

2.  The “VMD Main” window will appear.  Select: 
 
   File -> New Molecule… 
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3. In the “Molecule File Browser” that appears, click on “Browse” and select the 
trajectory.1.cif created by MMB.    

 
4. Change the molecule representation by going to the “VMD Main” window and 

selecting: 
Graphics -> Representations 

 
From the drop-down menu for “Drawing Method,” select “Licorice.”  (In VMD 1.8.7, 
you might want to try the “New Cartoon” method, which provides a nice visualization 
of the molecule). 

 
5. You should see a structure like that shown below by the end of the trajectory (the 

“Licorice” drawing method was used).  In this simple example, a single base pair was 
specified pulling the two ends together. 

 
To rotate the structure, click and drag the structure.  To translate the structure, type t 

and then click and drag the structure.  To return to rotating the structure, type r. 
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4 Exercise 1:   Generating 
your first 3D model   

4.1 Objectives 
 
In Exercise 1, you will: 

• Learn about some of the key parameters that need to be specified within the command 
file 

• Use your new knowledge about MMB to build a GNRA tetraloop from a starting 
sequence and published geometric constraints 

 

4.2 Examining and editing the input parameters file 
 
To edit or create and input parameters files, you must use a text editor (NOT a program like 
Microsoft Word, which will add many hidden characters for formatting, etc.)  For Windows, 
we recommend using WordPad (Start -> All Programs -> Accessories -> WordPad).  On 
Mac, some options include vi, emacs, and TextEdit (Macintosh HD -> Applications -> 
TextEdit.app). 

 
Start your text editor and open up the file commands.hairpin-short.dat, located in your 
MMB “examples” folder.  The default locations for your MMB folder are: 
 

(Windows)      My Computer -> C: -> Users -> Installer.2_14.Windows 
 (Mac OSX)      ~/Installer.2_18.OSX   
(Linux)      ~/Installer.2_18.Ubuntu    
 
If you are using Docker, you can start the container and fetch it from there: 
 
docker run -v   $(pwd):/work -it samuelflores/mmb-ubuntu 

cp /github/MMB/examples/commands.hairpin-short.dat . 
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exit 

 
After you exit the container you will see the “commands.hairpin-short.dat” is in your 

current directory. 
 
The syntax of the input parameters file is that each row contains information about one 
particular parameter.  The first word in the row is the name of the parameter, followed by 
one or more values needed to specify that parameter. 
 

4.2.1 RNA and protein sequence commands 

The first section of the commands.hairpin-short.dat  file contains the sequence parameters, 
described below. The baseInteraction records (discussed later) must appear sometime 

after the firstResidueNumber of each interacting chain in the base pair has been 

specified. firstResidueNumber must appear sometime after the corresponding 

sequence has been specified.  Other than that, the order in which parameters are listed 

usually does not matter, except in some advanced usages not covered in this tutorial.  
  
RNA A 2656 UACGUAAGUA 
 
 
 
 

To instantiate a biopolymer, use RNA , DNA 
or Protein command. This takes the 
following parameters: chain ID (string, 
single character long), first residue number 
(integer), and sequence (string, single letter 
code). 
This example instantiates an RNA chain 
with chain identifier "A", first residue 
number 2656, and the sequence shown in 
single-letter code.  The chain identifier 
should be a single character in compliance 
with the PDB format.  The sequence can be 
quite long, dependent mostly on your 
available memory.  If you are supplying an 
input PDB structure file, the coordinates 
will be matched according to the chain ID 
and residue number.   
 

4.2.2 Stage parameters 

MMB can divide up the simulation into stages, each with its own set of simulation 
parameters.  This allows flexibility in how the simulation is performed.   Stages are explained 
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in more detail in Exercise 2.  In this exercise, we will not be dividing up the simulation into 
stages, so the first stage and the last stage are the same:  
 
firstStage 1 
lastStage 1   
 
This starts the simulation at stage 1, and ends when stage 1 is over.   

 

Run parameters 

The next section of the commands.hairpin-short.dat  file specifies the run parameters, 
which control the bookkeeping aspects of the MMB simulation. 

4.2.2.1 baseInteractionScaleFactor 

The baseInteractionScaleFactor (alias forceMultiplier, 

twoTranformForceMultiplier) is a scaling factor applied to the baseInteraction 

forces and energies.  The base pairing forces themselves are applied using the following 
scheme.   
 
First, an attachment frame is generated which is part of the first residue’s glycosidic 
nitrogen body, but located outside it.  Then a body frame is generated which is located at the 
center of the second residue’s glycosidic nitrogen.  The body frame’s x-axis points along the 
glycosidic bond, and its z-axis is perpendicular to its base plane.  The location and 
orientation of the attachment frame is such that when it is aligned with the second residue’s 
body frame the desired base pairing geometry is attained.  Thus the task of parameterizing 
the MMB force field is firstly that of determining the correct position and orientation of the 
attachment frame.  We distribute a program to compute this given the coordinates of a base 
pair with the desired geometry, but will not cover its use in this tutorial.  After this is done 
one must also determine the depth of the potential well and its range – again beyond the 
scope of this tutorial.   
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In this exercise, baseInteractionScaleFactor was set to 20, to make the forces strong 

enough for convergence:   
 
baseInteractionScaleFactor 200 

 
Note that it is not  good idea to make the force multiplier too strong, because this will make 
the system stiff, which means there will be fast oscillations which will in turn require the 
variable time step integrator to take small time steps. If the 
baseInteractionScaleFactor parameter is not specified, it defaults to 1.    

4.2.2.1 reportingInterval 

This parameter controls the frequency of trajectory frames (reporting intervals) written by 
MMB.    
 
reportingInterval 4.0 
 

This instructs MMB to output a trajectory 
frame for every 4.0 ps of simulation time, 
starting at time 0 
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4.2.2.2  numReportingIntervals 

This parameter controls the number of such frames written by MMB at a single stage. 
Clearly,    simulation time = numReportingIntervals * reportingInterval .  
 
numReportingIntervals 10 
 

This instructs MMB to write 10 frames at 
the applicable stage.  
 
 

 

4.2.3 Temperature 

In the commands.hairpin-short.dat  file, the temperature parameter is specified: 

 
temperature 10.0  

 
This sets the temperature of the simulation 
to 10.0  
 

 
If setTemperature is  set to TRUE, as it is by default, MMB uses one of several available 
thermostat algorithms (set by thermostatType, which defaults to NoseHoover) to hold 
the system temperature to this setpoint. Note that thermostats do not conserve system 
energy. 

4.2.4 Base pairing and nucleic acid duplex force commands 

 
To generate base pairing forces to form the stem you can use the command: 
 

nucleicAcidDuplex  <chain identifier A>   
<first residue on A>  
<last residue on A>  
<chain identifier B>   
<first residue on B>  
<last residue on B> 

  
 
Recalling that the duplex is antiparallel, we require that: 
(first residue on A) < (last residue on A) 

and 
(first residue on B) > (last residue on B) 

 
 
In the commands.hairpin-short.dat  file, you will see an example of this: 
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nucleicAcidDuplex A 2656 2658 A 2665 2663 

 
You can also specify the base pairing forces explicitly and individually. The syntax is:   
 

baseInteraction  <chain identifier for first residue>   
<residue number for first residue>  
<interacting edge for first residue>  
<chain identifier for second residue>   
<residue number for second residue>  
<interacting edge for second residue>   
<glycosidic bond orientation>  

 
You can create the three base pairing forces above in this alternative way:,  
baseInteraction A 2658 WatsonCrick  A 2663 WatsonCrick Cis 
baseInteraction A 2657 WatsonCrick  A 2664 WatsonCrick Cis 
baseInteraction A 2656 WatsonCrick  A 2665 WatsonCrick Cis 
 
The first line specifies an interaction between the Watson-Crick edges of residues 2658 and 

2663 of chain A, with the glycosidic bonds in the Cis orientation. See Appendix: Forces for 

an explanation of this type of interaction. See the same appendix for the other supported  
combinations of base pairing parameters. 
 
When MMB sees three or more WatsonCrick/WatsonCrick/Cis interactions applied to 

three consecutive residues on each of two strands, it will automatically apply stacking 
interactions (HelicalStackingA3/HelicalStackingA5/Cis) to the consecutive 

residues (in this case 2656-2657, 2657-2658, 2663-2664, and 2664-2665).  Thus 

the total number of baseInteraction’s in the system is 3+4 = 7.  MMB monitors how 

many of these are approximately satisfied at each reporting interval, as you will see. 
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4.2.4.1 Using stages 

 

 
MMB divides the simulation into stages, each with its own set of simulation parameters.  The 
first stage is run using information solely from the input parameters file.  Since there is no 
structure, all biopolymers are instantiated as extended chains. The last structure in this stage 
is written out to the file last.1.cif.  This last.1.cif is the starting structure for stage 2 of the 
simulation.  Similarly, at the end of stage 2, the file last.2.cif is written out and used as the 
starting structure for stage 3.  This process repeats for as many stages as specified. 
 
Note that we can use this to start MMB using any PDB structure file. In the above explanation, 
firstStage was set to 1, but there’s nothing stopping us from setting it to a higher stage 

and reading in an arbitrary structure file, as follows: 
 

1. Renaming the desired PDB file to last.1.cif.  Make sure the chain ID and residue 
numbering in the PDB file match that in the command file. 

2. Setting the parameter firstStage   to 2 

3. lastStage would also need to be greater than or equal to 2 
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But let’s not do that now!  It will be part of a future exercise. 
For now, we will use stages to change our simulation parameters, as we explain next. 

4.2.4.2 Turning any parameter into a staged parameter 

Any parameters or commands can be enclosed in readAtStage …  readBlockEnd   
tags.  This means that the enclosed parameters will be read only for the specified stage.  So if 
you want to read certain values for parameter1, parameter2, etc only during stages 3, do this: 
 
 
readAtStage 3 
parameter1 value1 
parameter2 value2 
… 
readBlockEnd   
 
You can have as many of these blocks as you wish, and use them to change the parameters at 
many stages.  There are some other block markers which behave differently (e.g. 
readFromStage, readToStage, readUntilStage, readExceptAtStage), see the 
Reference guide. Also, there are a few nuances to keep track of.  The input file is read from 
top to bottom. Parameters encountered more than once in the input file are overwritten with 
the one closer to the bottom of the file prevailing. Commands (e.g. baseInteraction), on 
the other hand, are additive, rather overwriting each other.  See also Appendix: Forces.  
 
In this tutorial the first stage is very short – we are creating a hairpin without concern for 
steric clashes: 
 
reportingInterval 4.0  
numReportingIntervals 10 
 
So we are specifying that at stage 1, we will run for 10 reporting intervals.  Note that total 
simulation time = numReportingIntervals*reportingInterval .. so for stage 1 
simulation time is 40 ps. 
 
 

4.2.5 Global simulation parameters 

The next section of the commands.hairpin-short.dat  file specifies global simulation 
parameters, properties that apply to the overall simulation. 
 
 
numReportingIntervals 10   
 

This determines how many frames are 
generated.   In this case, 10 intervals are 
requested, resulting in 11 frames (if we 
count last.1.cif as the 11th) representing a 
40-ps simulation. 
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4.2.6 Turning on the MD force field 

You will see the following macro in your input file: 
setDefaultMDParameters 

This turns on all the PARM99 force field terms (except GBSA).  It’s equivalent to setting the 
following parameters: 
globalAmberImproperTorsionScaleFactor     1 

globalBondBendScaleFactor                 1 

globalBondStretchScaleFactor              1 

globalBondTorsionScaleFactor              1 

globalCoulombScaleFactor                  1 

globalVdwScaleFactor                      1 

globalGbsaScaleFactor                     0 

. 
You can verify for yourself that these parameters and values appear in the stdout. 

4.2.6.1 Run example 

 
In your command prompt/terminal window (see Exercise 0), type: 
 
(Windows)        dir 

(Mac OS, Linux)      ls 

 
You will see a list of files in your current directory.  Make sure you have commands.hairpin-
short.dat and parameters.csv.  If not, navigate to the directory with these files (see Exercise 
0). 
 
Now, run this example by typing: 
 
 (Mac OS)      ./MMB       -C commands.hairpin-short.dat 

(Linux)      ./MMB -C commands.hairpin-short.dat 
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The trajectory from this simulation run is in trajectory.1.cif.  The “1” in the output file name 
is the stage number.  This trajectory can be loaded into and visualized with VMD (see Exercise 
0. Make sure you first restart VMD or delete the molecule you loaded in that exercise).  By the 
end of the trajectory, you should see a structure like that shown below.  Notice how the 3 base 
pairs at the ends of the chain have been enforced to produce the hairpin structure. 
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5 Exercise 1B:   Generating 
your first 3D model, 
modern way with NtC’s  

5.1 Objectives 
 
This version of exercise 1 uses Nucleotide Conformers, which yield much better results, 
particularly with regard to helices. In this exercise, you will: 

• Learn about some of the key parameters that need to be specified within the command 
file 

• Learn about Nucleotide Conformers (NtC’s) 

• Use your new knowledge about MMB to build a GNRA tetraloop from a starting 
sequence and published geometric constraints 

 

5.2 Examining and editing the input parameters file 
 
To edit or create and input parameters files, you must use a text editor (NOT a program like 
Microsoft Word, which will add many hidden characters for formatting, etc.)  For Windows, 
we recommend using WordPad (Start -> All Programs -> Accessories -> WordPad).  On 
Mac, some options include vi, emacs, and TextEdit (Macintosh HD -> Applications -> 
TextEdit.app). 

 
Start your text editor and open up the file commands.GNRA-NtC.dat, located in your MMB 

folder.  The default locations for your MMB folder are: 
 

(Windows)      My Computer -> C: -> Users -> Installer.2_14.Windows 
 (Mac OSX)      ~/Installer.2_18.OSX   
(Linux)      ~/Installer.2_18.Ubuntu    
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The syntax of the input parameters file is that each row contains information about one 
particular parameter.  The first word in the row is the name of the parameter, followed by 
one or more values needed to specify that parameter. 
 

5.2.1 RNA and protein sequence commands 

The first section of the commands.GNRA-NtC.dat  file contains the sequence parameters, 

described below. The baseInteraction records (discussed later) must appear sometime 

after the firstResidueNumber of each interacting chain in the base pair has been 

specified. firstResidueNumber must appear sometime after the corresponding 

sequence has been specified.  Other than that, the order in which parameters are listed 

usually does not matter, except in some advanced usages not covered in this tutorial.  
  
RNA A 1     UACGUAAGUA 
 
 
 

To instantiate a biopolymer, use RNA , DNA 
or Protein command. This takes the 
following parameters: chain ID (string, 
single character long), first residue number 
(integer), and sequence (string, single letter 
code). 
This example instantiates an RNA chain 
with chain identifier "A", first residue 
number 1, and the sequence shown in 
single-letter code. An experimental 
structure of this is PDB ID 5MRC, namely 
the stretch starting withresidue 2639. The 
chain identifier should be a single character 
in compliance with the PDB format.  The 
sequence can be quite long, dependent 
mostly on your available memory.  If you 
are supplying an input PDB structure file, 
the coordinates will be matched according 
to the chain ID and residue number.   
 

5.2.2 Stage parameters 

MMB can divide up the simulation into stages, each with its own set of simulation 
parameters.  This allows flexibility in how the simulation is performed.   Stages are explained 
in more detail in Exercise 2.  In this exercise, we will not be dividing up the simulation into 
stages, so the first stage and the last stage are the same:  
 
firstStage 1 
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lastStage 1   
 
This starts the simulation at stage 1, and ends when stage 1 is over.   

 

Run parameters 

The next section of the commands.GNRA-NtC.dat 
  file specifies the run parameters, which control the bookkeeping aspects of the MMB 
simulation. 

5.2.2.1 forceMultiplier 

The forceMultiplier (alias twoTranformForceMultiplier, 

baseInteractionScaleFactor) is a scaling factor applied to the baseInteraction 

forces and energies.  The base pairing forces themselves are applied using the following 
scheme.   
 
First, an attachment frame is generated which is part of the first residue’s glycosidic 
nitrogen body, but located outside it.  Then a body frame is generated which is located at the 
center of the second residue’s glycosidic nitrogen.  The body frame’s x-axis points along the 
glycosidic bond, and its z-axis is perpendicular to its base plane.  The location and 
orientation of the attachment frame is such that when it is aligned with the second residue’s 
body frame the desired base pairing geometry is attained.  Thus the task of parameterizing 
the MMB force field is firstly that of determining the correct position and orientation of the 
attachment frame.  We distribute a program to compute this given the coordinates of a base 
pair with the desired geometry, but will not cover its use in this tutorial.  After this is done 
one must also determine the depth of the potential well and its range – again beyond the 
scope of this tutorial.   
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In this exercise, baseInteractionScaleFactor was set to 20, to make the forces strong 

enough for convergence:   
 
baseInteractionScaleFactor 200 

 
Note that it is not  good idea to make the force multiplier too strong, because this will make 
the system stiff, which means there will be fast oscillations which will in turn require the 
variable time step integrator to take small time steps. If the 
baseInteractionScaleFactor parameter is not specified, it defaults to 1.    

5.2.2.2 reportingInterval 

This parameter controls the frequency of trajectory frames (reporting intervals) written by 
MMB.    
 
reportingInterval 3.0 
 

This instructs MMB to output a trajectory 
frame for every 4.0 ps of simulation time, 
starting at time 0 
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5.2.2.3  numReportingIntervals 

This parameter controls the number of such frames written by MMB at a single stage. 
Clearly,    simulation time = numReportingIntervals * reportingInterval .  
 
numReportingIntervals 6 
 

This instructs MMB to write 10 frames at 
the applicable stage.  
 
 

 

5.2.3 Temperature 

In the commands.hairpin-short.dat  file, the temperature parameter is specified: 

 
temperature 10.0  

 
This sets the temperature of the simulation 
to 10.0  
 

 
If setTemperature is  set to TRUE, as it is by default, MMB uses one of several available 
thermostat algorithms (set by thermostatType, which defaults to NoseHoover) to hold 
the system temperature to this setpoint. Note that thermostats do not conserve system 
energy. 

5.2.4 Base pairing and nucleic acid duplex force commands 

 
To generate base pairing forces to form the stem you can use the command: 
 

nucleicAcidDuplex  <chain identifier A>   
<first residue on A>  
<last residue on A>  
<chain identifier B>   
<first residue on B>  
<last residue on B> 

  
 
Recalling that the duplex is antiparallel, we require that: 
(first residue on A) < (last residue on A) 

and 
(first residue on B) > (last residue on B) 

 
 
In the commands.GNRA-NtC.dat  file, you will see an example of this: 
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nucleicAcidDuplex A 1 3 A 10 8 

 
You can also specify the base pairing forces explicitly and individually. The syntax is:   
 

baseInteraction  <chain identifier for first residue>   
<residue number for first residue>  
<interacting edge for first residue>  
<chain identifier for second residue>   
<residue number for second residue>  
<interacting edge for second residue>   
<glycosidic bond orientation>  

 
You can create the three base pairing forces above in this alternative way:,  
baseInteraction A 1 WatsonCrick  A 10 WatsonCrick Cis 
baseInteraction A 2 WatsonCrick  A 9  WatsonCrick Cis 
baseInteraction A 3 WatsonCrick  A 8  WatsonCrick Cis 
 
The first line specifies an interaction between the Watson-Crick edges of residues 2658 and 

2663 of chain A, with the glycosidic bonds in the Cis orientation. See Appendix: Forces for 

an explanation of this type of interaction. See the same appendix for the other supported  
combinations of base pairing parameters. 
 
When MMB sees three or more WatsonCrick/WatsonCrick/Cis interactions applied to 

three consecutive residues on each of two strands, it will automatically apply stacking 
interactions (HelicalStackingA3/HelicalStackingA5/Cis) to the consecutive 

residues (in this case 1-2, 2-3, 8-9, and 9-10).  Thus the total number of 

baseInteraction’s in the system is 3+4 = 7. Except that in this exercise we are turning 

off the automated helical stacking.  Anyway MMB monitors how many of these are 
approximately satisfied at each reporting interval, as you will see. 
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5.2.4.1 Using stages 

 

 
MMB divides the simulation into stages, each with its own set of simulation parameters.  The 
first stage is run using information solely from the input parameters file.  Since there is no 
structure, all biopolymers are instantiated as extended chains. The last structure in this stage 
is written out to the file last.1.cif.  This last.1.cif is the starting structure for stage 2 of the 
simulation.  Similarly, at the end of stage 2, the file last.2.cif is written out and used as the 
starting structure for stage 3.  This process repeats for as many stages as specified. 
 
Note that we can use this to start MMB using any PDB structure file. In the above explanation, 
firstStage was set to 1, but there’s nothing stopping us from setting it to a higher stage 

and reading in an arbitrary structure file, as follows: 
 

4. Renaming the desired PDB file to last.1.cif.  Make sure the chain ID and residue 
numbering in the PDB file match that in the command file. 

5. Setting the parameter firstStage   to 2 

6. lastStage would also need to be greater than or equal to 2 
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But let’s not do that now!  It will be part of a future exercise. 
For now, we will use stages to change our simulation parameters, as we explain next. 

5.2.4.2 Turning any parameter into a staged parameter 

Any parameters or commands can be enclosed in readAtStage …  readBlockEnd   
tags.  This means that the enclosed parameters will be read only for the specified stage.  So if 
you want to read certain values for parameter1, parameter2, etc only during stages 3, do this: 
 
 
readAtStage 3 
parameter1 value1 
parameter2 value2 
… 
readBlockEnd   
 
You can have as many of these blocks as you wish, and use them to change the parameters at 
many stages.  There are some other block markers which behave differently (e.g. 
readFromStage, readToStage, readUntilStage, readExceptAtStage), see the 
Reference guide. Also, there are a few nuances to keep track of.  The input file is read from 
top to bottom. Parameters encountered more than once in the input file are overwritten with 
the one closer to the bottom of the file prevailing. Commands (e.g. baseInteraction), on 
the other hand, are additive, rather overwriting each other.  See also Appendix: Forces.  
 
In this tutorial the first stage is very short – we are creating a hairpin without concern for 
steric clashes: 
 
reportingInterval 3.0  
numReportingIntervals 6 
 
So we are specifying that at stage 1, we will run for 10 reporting intervals.  Note that total 
simulation time = numReportingIntervals*reportingInterval .. so for stage 1 
simulation time is 18 ps. 
 
 

5.2.5 Global simulation parameters 

The next section of the commands.hairpin-short.dat  file specifies global simulation 
parameters, properties that apply to the overall simulation. 
 
 
numReportingIntervals 6   
 

This determines how many frames are 
generated.   In this case, 10 intervals are 
requested, resulting in 11 frames (if we 
count last.1.cif as the 11th) representing a 
40-ps simulation. 
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5.2.6 Turning on the MD force field 

You will see the following macro in your input file: 
setDefaultMDParameters 

This turns on all the PARM99 force field terms (except GBSA) as explained before.   

5.2.7 Turning OFF the old-style stacking parameters, and using NtCs 

We used to use baseInteraction’s to impose the correct stacking geometry in helices. These got 
applied automatically whenever three or more WatsonCrick base pairs were imposed in a row. 
Let’s turn that off: 
 

setHelicalStacking False 
 
Now there is a more modern and effective way to do this, by restraining the backbone for 
consecutive pairs of nucleic acid residues.  NtC class AA00 is the most populated class, 
corresponding to A-form helices. Let’s impose those on the three base pairs in the helix, 
starting with the first stretch: 
 
NtC A 1 2 AA00 .5 

NtC A 2 3 AA00 .5 

 

Actually for a continuous stretch you can just use a single command for the whole stretch, like 
this: 
 
NtC A 1 3 AA00 .5 

And also on the complementary stretch: 
 

NtC A 8 10 AA00 .5 
 

5.2.7.1 Making the GNRA tetraloop  

 
trajectory.1.cif should have a nicely folded stem. However you may note that the tetraloop 
“GUAA” meets the GNRA profile, so we can fold it into a GNRA tetraloop.  
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We do that at stage 2, enclosing the relevant commands in a block: 
 
readAtStage 2 

 

First we create a “sheared” or Hoogsteen/Sugar Edge/Trans interaction to “staple” the ends 
of the tetraloop: 
 

baseInteraction A 2645 Hoogsteen A 2642 SugarEdge Trans 

 

Next we need to stack a few residues. The A-form helical stacking parameters work OK for 
this: 
 

NtC A 1 3 AA00 0.5 

NtC A 8 10 AA00 0.5 

 

And then we close the block: 
 
readBlockEnd 

 

5.2.7.2 Run example 

 
In your command prompt/terminal window (see Exercise 0), type: 
 
(Windows)        dir 

(Mac OS, Linux)      ls 

 
You will see a list of files in your current directory.  Make sure you have commands.hairpin-
short.dat and parameters.csv.  If not, navigate to the directory with these files (see Exercise 
0). 
 
Now, run this example by issuing e.g.: 
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 (Mac OS)      MMB  -C commands.GNRA-NtC.dat  

(Linux)      MMB  -C commands.GNRA-NtC.dat 

 
The trajectory from this simulation run is in trajectory.1.cif.  The “1” in the output file name 
refers to the fact that the results are from stage 1.  This trajectory can be loaded into and 
visualized with VMD (see Exercise 0. Make sure you first restart VMD or delete the molecule 
you loaded in that exercise).  By the end of the trajectory, you should see a structure like that 
shown below.  Notice how the 3 base pairs at the ends of the chain have been enforced to 
produce the hairpin structure. 
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6 Exercise 2:  Reading 
structures from a PDB file 
and rigidifying parts of 
your model 

 

6.1 Objectives 
 
In this exercise, you will: 

• Learn how to use stages to read in and simulate a structure from a PDB file 

• Learn about two new types of constraints that can be applied to your model:  Weld and 
Rigid 

• Experiment to see what happens when you release these constraints  
 

In your MMB folder, you should see the following files:  1ARJ.short.cif and 
commands.TAR.dat.  If you do not see them, make sure you are in your MMB folder (see 
Exercise 0). Also recall that you can fetch it from your docker image “examples” directory as 
explained in Exercise 0. 
 
1ARJ.short.cif is the file that we want MMB to read in, so let’s copy it to a file named last.1.cif.  
In your command prompt/terminal window, type:   
 
(Windows)       copy 1ARJ.short.cif last.1.cif 

(Mac OS, Linux)      cp 1ARJ.short.cif last.1.cif  

 
Now, let’s look at the input parameters file.  Open commands.TAR.dat in your text editor.  
Notice that firstStage and lastStage are both set to 2.  Notice also that sequence and 

firstResidueNumber are set to match that of the TAR molecule.  (You can compare the 
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values for these parameters with the PDB entry for 1ARJ at 
http://www.pdb.org/pdb/explore/remediatedSequence.do?structureId=1ARJ). 
 

6.2 Rigid mobilizers and Weld constraints  
 
MMB allows you to (1)  fix a chain to ground, (2)  weld two residues to each other, and (3)  
rigidify continuous stretches of residues.   
 
(1) is useful for instances when you are not interested in the overall rotation and translation 
of a molecule, or when you expect that the 5’ end would be fixed in an experimental situation.  
(2) is often useful when two strands of a helix have been made rigid and now need to be fixed 
with respect to each other, or to fix the ends of a flexible loop to each other.  (3) can be used, 
for example, to rigidify regions of a molecule to focus resources on a small region of interest, 
or to model the motion of domains about a flexible hinge.   
 
Note that while (3) almost always saves computer time, (1) and (2) may actually increase it.  
The reason for this is that rigidification involves Rigid mobilizers, but welding specifies Weld 
constraints.  The latter create constraint equations which must then be satisfied, while the 
former simply prevent internal degrees of freedom from being created in the first place.  See 
the Simbody literature (http://simtk.org/home/simtkcore and look under “Documents”) for 
details on this.  Also note that there are many more ways to control the bond mobilities in M, 
which we will not discuss in this tutorial.  
 
The following parameter settings in the commands.TAR.dat show how to set up these 
different types of rigidification.  Refer to the diagram on the next page for the residue 
numbering. 
 
removeRigidBodyMomentum False 
 

By default, MMB removes the rigid body 
momenta and keeps the system center of 
mass at the origin.  While this is useful to 
prevent the system from spinning or 
drifting, it is not compatible with 
constraints to Ground, so we will turn it off 
for this simulation. 

constrainToGround N 17 
 

This command fixes the C3’ atom of the 
specified residue (here chain N, residue 17) 
to the ground frame.  See Appendix: Forces 
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for an alternative command.  
 

mobilizer Rigid N 17 21  
mobilizer Rigid N 41 45  

These two lines rigidify helix I except for 
the base pair adjacent to the bulge 
(residues 17 to 21 and residues 41 to 45). 
 

mobilizer Rigid N 27 38  The stretch of residues from 27 to 38 (most 
of helix II plus the loop) are rigidified. 
 

constraint N 17 Weld  N 45  This line welds the two ends (residues 17 
and 45) together.  

constraintTolerance .001 This line controls the fidelity with which 
Rigid and Weld constraints are enforced.  A 
value of .001 means that all internal 
coordinates must be fixed within .001 
nanometers or radians, depending on 
whether they are distances or angles.   

 

 
6.3 SelectedAtoms 
 
We use a syntactical variation of the contact command introduced in Exercise 1.  Here we 

use the SelectedAtoms scheme, and also specify the residue range explicitly: 

   
contact SelectedAtoms N FirstResidue LastResidue 
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Where FirstResidue and LastResidue are self explanatory – but we could just as easily 

have given residue numbers (including any insertion codes) explicitly – see the Reference 
guide.  
 
These parameters you’ve encountered before: 
 
numReportingIntervals  200 
reportingInterval 2.0 
firstStage 2 
lastStage 2 
temperature   10.0 
 

 

6.4 Run example 
 
Make sure you are still in the directory with the commands.TAR.dat and the parameters.csv 
files.   To do this, in your command prompt/terminal window (see Exercise 0), type: 
 
(Windows)       dir 

(Mac OS, Linux)      ls 

 
You will see a list of files in your current directory.  Make sure you have commands.TAR.dat 
and parameters.csv.  If not, navigate to the directory with these files (see Exercise 0). 
 
Now, run this example by typing: 
 
(Windows)      MMB.2_14.exe -C commands.TAR.dat 

(Mac OS)      ./MMB       -C commands.TAR.dat 

(Linux)      ./MMB -C commands.TAR.dat 

 

The trajectory from this simulation run is in trajectory.2.cif file.  Note the “2” in the file name.  
Since the first stage in this run was “2,” the corresponding output has a tag of “2” in its file 
name.  Load this trajectory into VMD (see Exercise 0).  During the trajectory, you should 
notice that one part of the structure is rigid and the other part is flexible.  
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6.5 On your own:  Determine the effects of the Weld 
constraints and rigidification 

 
Try holding the helices together with just base pairing forces rather than constraints.  This is 
a matter of removing the lines specifying the Weld constraints and rigidification. Does the 
domain structure change much? 
 

6.6 On your own:  Turn the RNA into a different 3D structure 
 
Change the sequence and/or constraints and turn the RNA into a different 3D structure, e.g.,  
a hairpin or a pseudoknot. 
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7 Exercise 3:  Homology 

modeling Azoarcus to 
Tetrahymena Ribozyme 
P6ab 

 

7.1 Objectives 
 
In this exercise, you will: 

• Learn how to use MMB to construct a model using a known RNA structure as a 
template (this process is known as homology modeling) 

• Practice using the AllHeavyAtomSterics collision detecting spheres (optional) 

• Turn on MD forces using setDefaultMDParameters  

• Learn how to use alignmentForces  

 

7.2 Specifying the template 
 
The template is the known RNA structure.   

7.2.1 Read in the PDB file for the template 

You will need to read in the PDB file for this RNA (see Exercise 2).  In this exercise, you will 
be using the 1GID.shifted.cif file.   
 
In your examples folder, you should see the following files:  1GID.shifted.cif and 
commands.P6ab-threading.dat  (see Exercise 0). 
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Copy 1GID.shifted.cif to last.1.cif by typing the following in your command prompt/terminal 
window:   
 
(Windows)         copy 1GID.shifted.cif last.1.cif 

(Mac OS, Linux)      cp 1GID.shifted.cif last.1.cif  

 
Open up commands.P6ab-threading.dat in a text editor.  Verify that firstStage is set to 2 

so that the provided PDB file is read in and used by MMB.  
 

7.2.2 Specify template sequence to match information in the PDB file 

In the input parameters file, you will also need to specify a template sequence with a chain ID 
and residue numbering that matches that of the PDB file.  If you open the file 1GID.shifted.cif 
in a text editor, you will see that the first residue is numbered “220” and has a chain ID of “Q.”  
So, in the command file, you would include the following line: 
 

RNA Q 220 GUCCUAAGUCAACAGAUCUUCUGUUGAUAUGGAU  

 

7.2.3 Rigidify the template 

Lastly, you need to rigidify your template molecule so that it does not move.  The threaded 
chain is the one that will morph so that it matches the template.  In this example, the following 
line would rigidify the template (Tetrahymena ribozyme P6ab):  
 

mobilizer Rigid Q 220 253  

 

7.3 Specify the sequence of the target chain  
The target chain is the one being mapped onto a known structure.  For the Azoarcus fragment, 
this is done with the following line: 
 

RNA C 146 CCUAAGGCAAACGCUAUGG 
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7.3.1 Account for sterics using “Physics where you want it” 

We can use the PARM99 potential to prevent steric clashes and spread out the loop nicely. 
This turns on the Lennard-Jones and electrostatic terms, in addition to the bonded terms 
(which are on by default): 
 

setDefaultMDParameters 

 
Then we limit the MD forces to the target chain only:  
 

includeResidues C FirstResidue LastResidue 

 

Without this line, the template would also have non-bonded forces active, and would repel the 
threaded chain. In the original (Flores et al., RNA 2010) article, we used the contact 

command, you will see a note on this in the input file: 
 

#contact AllHeavyAtomSterics C 146 164  

 
This is faster, but can be a bit limited in preventing steric clashes, and won’t have the long-
range electrostatic repulsion that we find useful in this exercise. 
 

7.4 Apply forces to pull the corresponding residues together 
 
 
 

The alignmentForces keyword is explained in the Reference Guide, in our chapter on 

“Forces.” Also see our chapter on homology modeling of proteins, in this Tutorial.  
 
First, specify that all subsequent alignmentForces commands will be performed with a 
prohibitive gap penalty, effectively restricting us to ungapped alignments:  
 
 alignmentForces gapPenalty  -10000 

 
Now we set the force constant of all the atomSpring’s:  
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  alignmentForces forceConstant 300.0   

 
Lastly, let’s issue the actual alignment commands:  
 
alignmentForces C 146 151 Q 222 227   

alignmentForces C 160 164 Q 247 251  

 
In the first line above we are asking for residues 146-150 of the model (“C”) to be aligned with 
residues 222 to 300 of the template (“Q”). For each pair of corresponding residues, this 
command looks for all (non-hydrogen) atoms in the first residue which have atoms with the 
same name in the corresponding second residue. It then applies a spring to pull those two 
atoms together. The spring has an adjustable force constant, which we earlier set to 300.  
 

7.5 Run example 
 
Make sure you are still in the directory with the commands.P6ab-threading.dat and the 
parameters.csv files.   To do this, in your command prompt/terminal window (see Exercise 
0), type: 
 
(Windows)       dir 

(Mac OS, Linux)      ls 

 
You will see a list of files in your current directory.  Make sure you have commands.P6ab-
threading.dat and parameters.csv.  If not, navigate to the directory with these files (see 
Exercise 0). 
 
Now, run this example by typing: 
 
(Linux)      MMB -C commands.P6ab-threading.dat 
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The trajectory from this simulation run is in trajectory.2.cif file.  Load this trajectory into 
VMD (see Exercise 0).  At the beginning of the trajectory, you should see two distinct 
structures.  Eventually, you should see one end of the Azoarcus fragment appear to attach 
itself to the Tetrahymena fragment and then gradually “thread” the rest of itself onto 
Tetrahymena.    At the end of the trajectory, you will get a structure like that shown below, 
where the Tetrahymena template structure is in green and the Azoarcus target fragment is in 
blue.  Notice that we did the homology modeling even though there are portions of Azoarcus 
that do not match to any parts of Tetrahymena; we dealt with this by only applying forces to 
corresponding bases, and leaving the rest alone. 
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8 Exercise 4:  Protein 
homology modeling 

 

8.1 Objectives 
 
In this exercise, you will: 

• Learn how to create protein chains 

• Practice using the AllHeavyAtomSterics contact force 

• Use the threading forces for protein chains 

 

8.2 Specifying the template 
 
The template is the known protein structure.   

8.2.1 Provide the PDB file for the template 

You will need to read in the PDB file for this RNA (see Exercise 2).  In this exercise, you will 
be using the protein-template.cif file.     
 
In your Installation folder, you should see the following files: protein-template.cif and 
commands.protein-homology-modeling.dat.  If you do not see them, make sure you are in 
your installation folder (see Exercise 0). 
 
Copy protein-template.cif to last.1.cif by typing the following in your command 
prompt/terminal window:   
 
(Windows)         copy protein-template.cif last.1.cif 

(Mac OS, Linux)      cp protein-template.cif last.1.cif  
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Open up commands.protein-homology-modeling.dat in a text editor.  Verify that 
firstStage is set to 2 so that the provided PDB file is read in and used by MMB.   There 

are a some reporting and simulation parameters which you’re by now familiar with, and we’ll 
skip the explanation of those.  

8.2.2 Start the run 

  MMB –c commands.protein-homology-modeling.dat 

 
Note that the last Windows release was 2.14. Windows users will therefore find that the 
tutorial does not exactly follow the contents of their command files.  I actually hate Windows. 
There, I’ve said it! Anyway try the Docker image.  

8.2.3 Specify template sequence to match information in the PDB file 

In the command file, you will need to specify a template sequence with a chain ID and residue 
numbering that matches that of the PDB file.  If you open the file protein-template.cif in a text 
editor, you will see that the first residue is numbered “94” and has a chain ID of “E.”  So, in 
the command file, we have the following line: 
 
protein E 94 CYDYDAIPWLQNVEPNLRPKLLLKHNLFLLDNIVKPIIAFYYKPIKTLNGHEIKFIRKEEYIS 

 

8.2.4 Specify model sequence, for which no structural information is 
available 

You will also need to specify a model sequence with a chain ID (here we use “H” as a mnemonic 
for “human”) and residue numbering which should probably follow some biological 
convention.  We got our sequence from the telomerase database (telomerase.asu.edu): 
 
protein H 522 RSPGVGCVPAAEHRLREEILAKFLHWLMSVYVVELLRSFFYVTETTFQKNRLFFYRKSVE  

 

8.2.5 Rigidify the template and constrain it to ground 

You will need to rigidify the template, but not leave the model flexible.  You might also want 
to constrain the template to ground, though that’s a matter of taste.  Anyway, you know how 
to do this:   
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mobilizer Rigid E 94 156 

constrainToGround E 94 

8.2.6 Globally align the model and template (with gaps) 

 
Lastly, we will pull the model backbone into structural alignment with the template backbone 
based on sequence identity.  
 
The syntax of the alignmentForces is in our chapter on “Forces” in the Reference Guide. In a 
nutshell, this is a utility that aligns sequences, and applies atomSpring forces between 
likenamed atoms in corresponding residues under that alignment. The alignmentForces 
keyword admits parameters or commands. Parameters apply to commands that are below that 
parameter in the input file, but not to any commands that are above it. So let’s set the 
parameters for the alignment first. Start with the force constant for the atomSpring’s: 
 

 alignmentForces forceConstant 300  

 
We want to allow gaps, so we leave the alignmentForces gapPenalty at the default (do nothing 
about this). 
 
Next we tell it which chains need to be globally aligned:  
 

alignmentForces H E  

 

In the above we are using alignmentForces as a command, and passing two arguments – the 
chain IDs to be aligned. Global alignments have a high potential to be crappy locally, so make 
sure you check the alignment. This is explained in the Reference Guide but at the risk of being 
redundant -- search for “SeqAn sequence alignment follows:” in the (admittedly) verbose 
output. You may see something like this:  
 
 
55 –RSPGVGCVPAAEHRLREEILAKFLHWLMSVYVVELLRSFFYVTETTFQ 
               |  ||   | |    |     |     | |    |  
  CYDYDAIPWLQNVEPNLRPKLLLKHNLFLLD-NIVKPIIAFYYKPIKTLN  
50 . : KNRLFFYRKSV--- 
            | ||  
       GHEIKFIRKEEYIS 
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where “-“ are deletions, and “|” are perfect matches.  
 

8.2.7 Globally align (no gaps) 

 
If you are not happy with this gapped alignment you can specify an ungapped alignment, by 
setting  alignmentForces gapPenalty to a very negative value. Then we can also specify 
fragments (residue ranges) to be aligned:  
 
#alignmentForces H 524 543 E 96 115  
#alignmentForces H 544 580 E 117 153  
 
In the first line above we are asking for residues 524-543 of the model (“H”) to be aligned with 
residues 96 to 115 of the template (“E”). Similarly, chain H 544-580 vs. chain E 117-153. How 
do we know that these residue stretches should align? From the sequence alignment (again, 
telomerase.asu.edu). There is a single-residue insertion in chain E -- residue 116. 
Correspondingly, we do not align this residue with any on chain H. .. And we’re done! The 
output should look something like this: 
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Where the template is in green and the model is in blue. 
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9 Exercise 5:  Protein 
morphing  

 

9.1 Objectives 
 
Using what you learned earlier, you will learn to generate a putative trajectory between two 
known conformations of a macromolecule, a technique known as morphing.  This will give 
you practice in: 

• Using the alignmentForce command (for a slightly different purpose). 

• Using the loadSequencesFromPdb command. 

• Using the mobilizer command. 

• Using the readAtStage .. readBlockEnd conditional blocks. 

• Adjusting the reportingInterval 

 

9.2 Introduction 
We will morph Glutamine Binding Protein (GlnBP), a molecule somewhat larger than any 
we’ve worked with up to now.  GlnBP is a domain hinge bending protein, meaning that it has 
stable structural domains connected by a flexible hinge.  We will take advantage of this 
property by rigidifying the two domains of the model for time savings.  This will get the model 
most of the way towards the target molecule. As an exercise, in a final stage you will leave the 
model flexible to complete the morph.  You will see that this exercise is like the preceding 
homology modeling exercise, with one key difference: in morphing, not only the target’s, but 
also the model’s initial atomic coordinates are known.  
Morphing is an old technique, and many good servers (e.g. molmovdb.org) and programs are 
available.  You will see that selective rigidification offers the advantage of speed.  In published 
work, we have morphed the entire ribosome, including all 50 protein subunits, in about 2.5 
hours of computer time.  Using MMB also gives you more control over precisely how the 
morph is done.  The price of all this is that the process is bit more manual, but you will learn 
how to do it here.  
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9.3 Preparing the input structure file 
In the previous exercise, we copied the coordinates into last.1.cif.  However that was a little 
kludgy. We can just specify the name of the file that has the structures we want. Recall that 
stage 1 does not take any input structures. So we start at stage 2: 
 
readAtStage 2 
# Template, 1WDN        
loadSequencesFromPdb 1WDN.short.cif  
# Model, 1GGG 
loadSequencesFromPdb 1GGG.short.cif 
readBlockEnd 
 

MMB will find a chain “B” in  1WDN.short.cif, and a chain “A” in 1GGG.short.cif. There are 
actually ways to deal with chain naming conflicts, but for now just verify that we are not 
duplicating chain IDs. 
 

9.4 Start the run 
 
Start the job as usual: 
 
MMB –c commands.protein-morphing.dat 

 

9.5 Examine the input file 
 
As in the previous exercise, we have two chains. However in contrast with the homology 
modeling example, here both chains are structured.  The “model”, chain A, has flexibility 
limited to the hinges and will be aligned with a fully rigid template chain B: 
 

Chain B has some residues at the N- and C-termini which don’t exist on chain A.  However you 
can verify that residue A 5 corresponds to B 5, and so on all the way to residue 224.  So we will 
pull those residues together like this:   

 
alignmentForces gapPenalty -10000 
alignmentForces  A 5 224 B 5 224 
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We will be doing this in two stages – one for rigid body alignment and another for semi-rigid 
morphing, as we will explain: 

 
firstStage 2  

lastStage 3  

 
Initially we will use a reportingInterval of 10 ps, but you may reduce this later.    

 
reportingInterval 10.0 

numReportingIntervals 25 

 
We will be constraining residues to ground later, so let’s keep turn off the rigid body momentum 
removal: 

 

removeRigidBodyMomentum false 

 
The target molecule will be rigid throughout this exercise. The model will have some of the 
flexibility given back later. But we start by fully rigidifying both chains. The following syntax, with 
no chain IDs, tells MMB that it applies to all chains: 

 
mobilizer Rigid 

 
 

9.5.1.1 Turning any parameter into a staged parameter 

Any parameters or commands can be enclosed in readAtStage …  readBlockEnd   
tags.  This means that the enclosed parameters will be read only for the specified stage.  So if you 
want to read certain values for parameter1, parameter2, etc only during stages 3, do this: 
 
 
readAtStage 3 
parameter1 value1 
parameter2 value2 
… 
readBlockEnd   
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You can have as many of these blocks as you wish, and use them to change the parameters at 
many stages.  There are some other block markers which behave differently (e.g. 
readFromStage, readToStage, readUntilStage, readExceptAtStage), see the 
Reference guide. Also, there are a few nuances to keep track of.  The input file is read from top 
to bottom. Parameters encountered more than once in the input file are overwritten with the one 
closer to the bottom of the file prevailing. Commands (e.g. baseInteraction), on the other 
hand, are additive, rather overwriting each other.  See also Appendix: Forces.  
 

 
Our first task is to rigidly align the model and target, since they start out spatially quite separated.  
We will do this at stage 2, using the readAtStage command just introduced.  At this stage, the 

model will be completely rigid: 
 

# Rigid alignment stage 
readAtStage 2 

 
We turn off the electrostatics and Lennard-Jones forces for  both chains. We have to turn them 
off in any case at least for the template, because otherwise we would not be able to superimpose 
the model on it: 
 

deactivatePhysics A 
deactivatePhysics B 
 

We already specified alignmentForces, so not much else to do : 
 

# This stage is short, will converge after 60 ps or so:     
reportingInterval 10.0 
numReportingIntervals 6 
ReadBlockEnd 

 

Then at stage 3 we will do the semiflexible morphing.   
 

readAtStage 3 
reportingInterval 1.0 
numReportingIntervals 25 
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We know from published work that there is a hinge at residues 88-89 and 181-183.  So we rigidify 
the thus-defined structural domains, and constrain one of them to the ground: 

 

 

# Flexibilize just the hinges on your model: 
mobilizer Default A 87+1 90-1 
mobilizer Default A 180+1 184-1 
 

Note that MMB can do +/- arithmetic.  
 
Next we have to constrain the fragments that belong to the same structural domain. Otherwise 
the domain would fall apart: 

 

# The N- and C-termini are in the same, discontinuous domain. 

Constrain them to each other, otherwise the domain would fall apart: 
constraint A FirstResidue Weld A LastResidue 

 

Next turn on the electrostatic and LJ interactions, for a zone 0.7 nm in radius around all flexible 
residues (in our case that means hinge residues). All residues outside this zone feel no such 
interactions. In the case of chain A residues, this is just a computational economy measure: 

 

setDefaultMDParameters 
physicsRadius .7 
 

Remember we said the interactions have to be turned off all the time for the template chain. It is 
just a “ghost”, the alignmentForces are pulling A onto B, but otherwise A does not interact with 
B: 

 

# Turn off physics for the template chain: 
deactivatePhysics B 
readBlockEnd 
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Stages 2 and 3 should be done by now.  Open trajectory.2.cif and trajectory.3.cif in your molecular 
viewer.  You should see something like the following: 

 

 
Left: Model (blue) and target (gold) in their initial, separated positions. Center: Model and target 
rigidly aligned.  Right: Model semiflexibly aligned with target. 

 

9.6 On your own: complete the morph with a fully-flexible 
alignment 

 
You will notice that at the end of stage 3, the model is not fully aligned with the target.  In this 
exercise, you will make the model fully flexible.  You should end up with something like the image 
below.   
 
Hints: 
1. You will need to do this at stage 4. 
2. Check that the model is fully flexible. 
3. The simulation will be slower now, so reduce the reporting interval by ~ 10X. 
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10 Exercise 6:  Efficiently 
generate alternate protein 
conformations 

 

 
 

10.1  Objectives 
 
In exercise 2 you learned how to use rigidification, randomizeInitialVelocities, and 

sterics to do thermal exploration of RNA conformations.  In this exercise you will do the same 
for protein. Specifically this will teach you: 
 

• The ProteinBackboneSterics sterics type arameter  

• An efficient way to generate alternate conformations of proteins. 

• Doing alignments and RMSD calculations in VMD  
 

10.2 Introduction 
There are many reasons to generate alternate conformations of proteins.  Maybe you want to 
make an ensemble for protein-protein or protein – small molecule docking.  Maybe you are 
trying to elucidate functional mechanisms.  In any case, generating alternate conformations 
is often done by randomly moving atoms, or by using normal modes.  These methods do not 
conserve the correct domain structure. For many hinge bending proteins, domain structure is 
conserved throughout the motion to some degree.  In this exercise, you will find the alternate 
conformations that are possible under the assumption that only the hinge residues are flexible.  
You will use the ProteinBackboneSterics scheme, in which only the N, Cα, and C atoms 

get collision detecting spheres, to avoid generating clashing structures. 
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10.3 The command file 
Open the file commands.GlnBP-thermal-exploration.dat. Most of the contents will 

be familiar to you.  You haven’t used this sterics parameter before: 
 

contact ProteinBackboneSterics A 1 220  

 
The hinge residues are 89-90 and 180-182: 
 
mobilizer Rigid A 1 88 

mobilizer Rigid A 91 179 

mobilizer Rigid A 183 220 

 
The first and third fragments  comprise a discontinuous domain that we will fix to ground: 
 
constrainToGround A 1 

constrainToGround A 220 

 
Leaving the second domain all the motion permitted by the hinge (and sterics).  
 

10.4 Run MMB 
 
Copy 1GGG.short.cif  to last.1.cif .  The former is an open form of Glutamine Binding 

Protein (GlnBP). 
 
Now run MMB against the command file, e.g.: 
./MMB       –c commands.GlnBP-thermal-exploration.dat 
./MMB  –c commands.GlnBP-thermal-exploration.dat 

 
This will create a trajectory.2.cif . 

 

10.5 Analyze the conformational coverage  
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The idea behind a thermal exploration of this nature is that your ensemble may contain an 
alternate conformation which exists under certain conditions.  You would not know this 
alternate conformation in a practical situation, so to have more confidence that your sampling 
is reasonably comprehensive, you might see how often the trajectory returns to its initial 
conformation, within perhaps 2Å RMSD or so.   Actually we calculate this RMSD only over the 
mobile domain (in our case residues 87 to 175), a quantity Ruben Abagyan calls sRMSD.  You 
can easily calculate this sRMSD using VMD.  A sample script follows: 
 
# loop a variable i from 1 to 269: 

for {set i  1} {$i < 269} {incr i} { 

# select residues 91 to 179 of the reference structure (frame 0, or 

the starting conformation).  “atomselect 0” means choose the first 

(in this case, the only) trajectory that is loaded in VMD. Put this 

structure in a variable called sel0: 

set sel0 [atomselect 0 "resid 91 to 179" frame 0];  

# create a selection set (sel1) consisting of the same domain in frame 

i : 

set sel1 [atomselect 0  "resid 91 to 179"  frame $i];  

# compute the RMSD between sel0 and sel1 : 

set my_rmsd [measure rmsd $sel0 $sel1] ;  

# print the RMSD : 

puts $my_rmsd    

# end the loop: 

}  

 
You can put this script in a file and read it in.  It’s pretty easy just to dump it as a single line 
into the TK console (Extensions -> TK Console), like this: 
 
for {set i  1} {$i < 269} {incr i } { set sel0 [atomselect 0 " resid 

91 to 179  " frame 0 ]; set sel1 [atomselect 0  "  resid 91 to 179  "  

frame $i]; set my_rmsd [measure rmsd $sel0 $sel1] ; puts $my_rmsd   } 

 
You will get a stream of sRMSD numbers.  Cut and paste these into your favorite spreadsheet.  
You should be able to make a graph like this: 
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Note the sRMSD dips below 5Å a couple of times. You can run this longer if you are not 
convinced you’ve gotten good sampling.  You can also compare this to the closed structure 
(PDB ID: 1WDN).  That requires some aligning and careful definition of sel0 and sel1.  
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11 Exercise 7:  Solve protein 
structure by NMR 
constraints 

 

 
 

11.1  Objectives 
 
You've learned a lot so far. You’ve learned how to do everyday modeling tasks such as 
morphing, conformational sampling, and homology modeling. You learned how to turn base 
pairing contacts into 3D structure of RNA. I will progressively make things more challenging 
for you. In this chapter you will learn how to turn distance constraints, such as can be obtained 
from NMR experiments, into 3D structure with a little help from the Amber99 force field. This 
will involve the following tasks: 
 

• Use the atomTether command  

• Turn a list of distance constraints into MMB commands  

• Turn on the Amber99 force field for the entire system 
 

11.2 Instructions 
You are reasonably far along now, so you don’t need detailed instructions for everything – 
thus I’ll skip a few basic steps.  You will need to turn on all terms of the force field: 
 

globalAmberImproperTorsionScaleFactor     1 

globalBondBendScaleFactor                 1 

globalBondStretchScaleFactor              1 

globalBondTorsionScaleFactor              1 
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globalCoulombScaleFactor                  1 

globalVdwScaleFactor                      1 

 
In this exercise we are turning on physics everywhere.  So you can just leave 
physicsWhereYouWantIt at the default value, or set it explicitly: 

 
physicsWhereYouWantIt FALSE 

 
You might want to use a temperature that leads to some oscillation about equilibrium: 
 
temperature 100  

 
You will also need the sequence.  You can extract it from 1UAO.short.cif using the 

extract_FASTA.awk script. 

 
Lastly, you will want to add the distance constraints.  Let’s say you know that on chain A, atom 
2HA of residue 1 is at most .45nm from atom HE3 of residue 9.  The way you would enforce 
that is: 
 
atomTether A    1  2HA  A    9  HE3 .4500  300.00 

 
where the last (optional, defaults to 30 if left out) number specifies the spring constant of a 
spring that will pull the two atoms together if they’re more than 4.5Å apart. I suggest making 
this 300 for this application, because empirically I’ve found this is strong enough. 
 
Unfortunately the people that made the 1UAO structure didn’t use the PDB atom naming 
convention.  So we will have to correct the atom names.  The following substitutions are 
necessary: 
 
Everywhere: 
HA2 2HA 
HB2 2HB 
HG2 2HG 
HG21 1HG2 
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HG22 2HG2 
HG23 3HG2 
 
Residue 4 only: 
HD2 2HD 
 
If you want to skip this hassle, just use 1UAO.atoms-renamed.cif.  

 
I’ve included a list of distance constraints called 1UAO-disre-simple.txt . Try to use it to 

generate the atomTether commands.  You may find the parse-restraints.pl  script 

useful.  
 
The parse-restraints.pl script looks like this: 
 

# perl ./parse-restraints.pl 1UAO-disre-simple.txt 1UAO.short.cif 

#open the restraints file (first argument): 

open RESTRAINTS, $ARGV[0]    or die $!; 

#load restraints into an array: 

@restraints = <RESTRAINTS> ; 

close (RESTRAINTS); 

int r; 

#for each restraint: 

for ($r = 0; $r < scalar(@restraints); $r++) 

{ 

    #first atom number 

    int $i ; $i =  substr($restraints[$r],0,3); 

    #second atom number 

    int $j ; $j =  substr($restraints[$r],10,3); 

    #distance: 

    int $dist ; $dist =  substr($restraints[$r],20,5); 

    # initialize to “*” so we can later tell if not read 

    $atomName1 = "*"; 

    $atomName2 = "*"; 

    int $residueNumber1; $residueNumber1 = -1; 
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    int $residueNumber2; $residueNumber2 = -1; 

    $chain1 = "A"; 

    $chain2 = "A"; 

    #open PDB file (second argument) 

    open PDB, $ARGV[1]    or die $!; 

    #for each line in PDB file: 

    while (<PDB>) { 

        #parse the atom number 

        int $PDBatomNumber; $PDBatomNumber = substr($_,6,5); 

        #if first atom number matches an atom number in the PDB file 

        if ($PDBatomNumber == $i)        { 

   # extract atom name, residue number, and chain ID:  

            $atomName1      = substr($_,12,4); 

            $residueNumber1 = substr($_,22,4); 

            $chain1         = substr($_,21,1); 

        } 

        if ($PDBatomNumber == $j)        { 

   # extract atom name, residue number, and chain ID:  

            $atomName2      = substr($_,12,4); 

            $residueNumber2 = substr($_,22,4); 

            $chain2         = substr($_,21,1); 

        } 

 

    }     

#print out MMB atomTether commands: 

print "atomTether $chain1 $residueNumber1 $atomName1  $chain2 

$residueNumber2 $atomName 

2 $dist \n"; 

} 

#done! 

 
You will also need to convert the distances from nm to Å.  While you’re add it, set the spring 
constant to 300.0. 
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It’s best to make your own MMB input file.  But if you just want the right answer, look at the 
provided commands.NMR.dat .   

 

11.3 Results 
Your structure should agree with the published one (1UAO.short.cif in your MMB 

distribution) within about 1.3Å RMSD.  
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12 Exercise 8:  Fitting to 
electron density maps 

 

 
 

12.1  Objectives 
 
You may have found some of the preceding exercises redundant in some sense, perhaps 
repeating in protein what was already done in RNA, etc.  Perhaps you could be forgiven for 
falling asleep. In this exercise we will do something completely different – fitting atomic 
coordinates to electronic density maps, which could have come from a cryo-electron 
microscopy (CryoEM), small-angle X-ray scattering, crystallographic, or other experiment.  
The skills you picked up in previous lessons about selective rigidification, constraints, forces, 
even “Physics where you want it” or straight-out all-atoms force fields will serve you well as 
you efficiently build 3D models. The following parameters will be new to you: 
 

• densityForceConstant  

• densityFileName 

 

The following command will also be new: 
 

• fitToDensity 

 
If you want a challenge, you can also learn how to extract the sequence (in single-letter code) 
from and to renumber the residues in a PDB file. Hopefully you will also gain some insight 
into the flexibility of the ribosome. 
     

12.2  Introduction 
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Electron density maps can be produced by cryo-electron microscopy (Cryo-EM), Small Angle 
X-ray Scattering (SAXS), X-ray crystallography, and other means. They are an important 
source of structural information.  However they are hard to interpret without solving for the 
nuclear positions.  Most of the structures in the PDB were once electronic densities, and have 
been fitted with nuclear positions. 
 
There are many fine pieces of software available for  fitting 3D structure to density maps.  At 
Uppsala, “O” is quite popular.  I will not attempt a full review of such programs here. Our 
approach, however,  follows the work of Klaus Schulten, who invented Molecular Dynamics 
Flexible Fitting (MDFF). In MDFF, the atoms in the molecule or complex are subject to a 
conventional Molecular Dynamics force field, plus an additional force which is proportional 
to the atomic mass and the gradient of the electronic density.  In MMB, we adapt this force as 
follows: 
   

 

 
Where i is the atom index, mi is the mass of atom i,  is the electronic density at the 

nuclear position of atom i, A is a user-adjusted scaling factor, and  is the gradient operator. 

Accordingly,  is the density-derived force vector applied to atom i. This is computed for and 

applied to every atom i in the system. 
In this exercise, you will specify the sequence of a tRNA molecule, read in an initial set of 
nuclear coordinates, read in the density map of the ribosomal hybrid state, and then fit the 
tRNA molecule into the density.  So let’s get started! 
 

12.3 Run MMB 
 
In a practical situation, preparing a good starting model is an important part of the work. I 
used Venki Ramakrishnan’s structure of the T.thermophilus ribosome in the classical state 
(2J00, 2J01, 2J02, 2J03), which I then semiflexibly morphed to match Jamie Cate’s “R2” 
intermediate structure. You can read all about the why and wherefore in my 2011 paper in 
Proceedings of the Pacific Symposium on Biocomputing. Anyway, I took the morphed 
structure and re-centered it using COLORES, which is part of the Situs package.  This is easier 
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than it might sound, but you won’t have to do any of it, just use the coordinates in tRNA.cif, 

which is in your MMB 2.4 distribution. Issue:     
 
cp tRNA.cif  last.1.cif .  

 
Unfortunately this will actually take some time to converge. So start it now, so at least it will 
run for a couple of minutes while we finish going through the input file. Issue: 
 
MMB      –c commands.tRNA-fitting.dat 

 
Depending on your OS. Note that MMB 2.4.1 has a density fitting algorithm that is a full 10X 
faster than MMB 2.4!  So make sure you are using at least MMB 2.4.1 for this exercise.  
 

12.4 The command file  
 
We first instantiate a tRNA molecule: 
 
RNA V 5 CGCGGGAUGGAGCAGCCUGGUAGCUCGUCGGGCUCAUAACCCGAAGGUCGUCGGUCAAAUCCGGCCCCCGCAA 

 

If you don’t have the commands.tRNA-fitting.dat file, you can extract the sequence 

from a structure file that contains only the tRNA, using e.g. awk –f extract-FASTA.awk 

<PDB file> .   You will find extract-FASTA.awk in your 2.4.1 distribution. 

 
Next we rigidify the tRNA fully: 
 

mobilizer Rigid  

 

We have to turn off the rigid body momentum remover, since this would always be trying to 
recenter the molecules: 
 
removeRigidBodyMomentum false 

 

As you recall from our definition of  above, the scaling factor A is user-adjustable. In the 

command file, A is called densityForceConstant. Make this factor too small, and the 
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fitting will take forever.  Make it too big, and the molecule might fly out into deep space. Turns 
out it’s probably best to leave it at the default value of unity: 
 

densityForceConstant  1.00 

 

Now we specify the name of the electron density file, which has to be in XPLOR format: 
 

densityFileName   ./tRNA.xplor 

 
Then we activate the density-based force field for chain V: 
 
fitToDensity  V 

 
Note that we could just as easily have issued: 
 
fitToDensity  V  FirstResidue  LastResidue 

 
(which does exactly the same thing), or: 
 
fitToDensity 

 
(which fits all chains in the system, which in this case is also the same thing) 
 
..I just wanted to make sure you understand the polymorphism of this command. 
 
The rest of the parameters will be familiar to you. 
 

temperature 1     

numReportingIntervals 100 

reportingInterval .01      

firstStage 2     

lastStage 2 

 

12.5  View the results  
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VMD can display density maps.  So read in tRNA.xplor. I rendered this using “Solid 

surface.” Then read trajectory.2.cif as a new molecule.  You should be able to watch the tRNA 
move into its corresponding density.  It should look something like this: 
 

  
 
 

12.6 On your own 
 
We just fitted the P/E site tRNA into the tRNA density map.  If you want to fit a bigger subunit, 
try 16S. You can download the emd_1315 density map and fit the 16S from 2AVY (provided, 
or get from the PDB).  You will need to extract the sequence of this subunit, and make 
everything but the neck region Rigid. You may consider the neck region to consist of residues 

903 and 1373. Make sure you Weld together fragments of any discontinuous domain.   
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13 Exercise 9:  Spiral genome 
tracing for viral DNA  
density maps 

 

13.1  Objectives 
 
For most viruses, determining the structure of the genome is a significant challenge. First, the 
resolution may be low. Second, even if the resolution is relatively good, the genome maybe 
thousands, tens of thousands, or even more base pairs long, so if you are trying to use 
traditional fitting software you may be facing months of full-time work not to mention 
excruciating eyestrain.  However large regions of many viral genomes follow spherical- or 
cylindrical-spiral geometry. For these cases I have created the spiral genome tracing feature.  
 
The figure below summarizes the process. There are two geometries that are currently 
supported: sphere and cylinder. Spirals have the property that consecutive windings are 

equidistant at closest approach – much like real DNA, which for physical reasons has a 
preferred interhelical distance. To make a coarse grained model of the DNA, we place one 
atom to represent each base pair, along the spiral trace. Of course we lose accuracy by using 
only one atom to represent the entire base pair. However we gain accuracy in that we can 
evaluate the fitting energy for the entire spiral at once. To understand why this is, consider the 
pitch parameter. A given trace could fit the observed density map perfectly at the beginning 

of the spiral, but if the pitch is off even by tenths of an Ångström, it will be completely wrong 

by the time it gets to the other side of the virus. Thus the ideal value of this parameter will be 
very clear from monitoring the fitting energy as we vary the pitch. You can set up a loop to 

sweep a parameter over a given range, and each consecutive evaluation will add only seconds 
to your compute time (reading in the density map takes a bit longer than that, but needs be 
done only once).   When you are satisfied with the parameters, MMB can write out a command 
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file. Run that file, and the output will be an atomistic model, with each coarse-grained atom 
now replaced by one all-atom base pair. 
 

 
 
The command that is new to you is spiralDNA. It should always be followed by the 

subcommand “writeCommands” or any of the following parameters: 

 

• chainID 

• center 

• radius 

• geometry 

• cylinderHeight  

• pitch 

• helixAdvancePerBasePair 

• spiralIsRightHanded 

• startTheta 

• endTheta 

• phiOffset 

• frequencyPhaseAmplitude 

• spiralPdbFileName 

• spiralCommandsFileName 
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These are all explained in the “Spiral genome tracing” chapter of the MMB Reference Guide. 
Please stop reading this tutorial and read that chapter now.  
 
     

13.2  A simple example, no computing of density fitting energy, 
no optimization: 

 
The command file we will use is called commands.P68-fitting.dat, in your examples 

directory. Pop that open with your text editor and follow along. 
 
First, just do this, don’t worry much about the explanation (which is anyway in the command 
file): 
 
readPreviousFrameFile 0 

numReportingIntervals 1 

 

Do you recall how to employ user variables? Let’s define pi so we can use the more intuitive 
degrees and then convert to rads: 
 

@pi 3.14159265358979 

 
We will create a single chain, chain ID Z: 
 

spiralDNA chainID Z 

 
Spiral will be right handed: 
 

spiralDNA spiralIsRightHanded 1 

 

I had to do a bit of fiddling to get some parameters just right, hence the use of arithmetic: 
 

spiralDNA center 31.89 31.89+2.0 31.89 

spiralDNA radius   16.3+2.3+(-2)*.05 
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The pitch turns out to be pretty constant, across shells: 
 
spiralDNA pitch 2.3 

 

As of course is this: 
 
spiralDNA helixAdvancePerBasePair .34 

 
The north and south pole regions have very poor resolution in this map, so we only trace over 
a relatively modest range of theta: 
 

spiralDNA startTheta 1.00 

spiralDNA endTheta 2.2 

 
This is a rotational offset, about the polar axis: 
 

spiralDNA phiOffset (16-2)*20*@pi/180 

 

We clear the frequencyPhaseAmplitudeVector, out of paranoia rather than necessity: 
 

spiralDNA frequencyPhaseAmplitude clear 

 
If you want to make an atomistic (fine-grained) model, separately run MMB using this 
command file: 
 
spiralDNA spiralCommandsFileName commands.spiral.dat 

 

This is where the fine grained structural coordinates will be written: 
spiralDNA spiralPdbFileName spiral.cif 

 
This tells MMB you want to generate the command file, with name specified with 
spiralCommandsFileName above: 
 
spiralDNA writeCommands 
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Howe. It is the last spiralDNA command you write, for a given chainID. However if you 

define a new spiralDNA chainID, and change any other spiralDNA parameters you 

wish, you can issue spiralDNA writeCommands again and an additional chain will be 

created. 
 
This is the P68 density map, provided by Dominik Hrevik and Pavel Plevka. Maybe you don’t 
need to use it: 
 
#density densityFileName  LocalRef_02_Cl02_res85_nocaps2_box.mrc 

 
You can download this from Zenodo (10.5281/zenodo.10036620) or perhaps less-reliably 
from http://pe1.scilifelab.se/MMB-annex/examples/ . If you do have that file.. this command 
tells MMB you want to compute the fitting energy for the coarse-grained chain Z.  
 
#fitToDensity Z 

 
As a suggestion, vary one of the parameters above (center, radius, pitch, etc) and see which 
value gives you the lowest fitting energy. You can just search the stdout for the per-atom 
potential energy, you are looking for a string that looks like: "(Use with caution)  

totalPotentialEnergy / atom".      

     

13.3  Challenge: optimize geometric parameters 
 
To do this, you will have to have your density map file, specified in densityFileName. In 

this exercise, you will vary some parameter, and determine the value of that parameter which 
minimizes the fitting energy. I provide no help beyond these hints: 
 
You should set firstStage and lastStage to range over a sufficient number of stages. 

Each stage you will evaluate one value of your parameter. 
You may find the variable @CURRENTSTAGE useful. MMB sets this to the number of the 

current stage. 
Then set your parameter using arithmetic and @CURRENTSTAGE. 
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13.4  Going atomistic 
 
If you did the example, you will see a file called commands.spiral.dat , in your working 

directory. You do not need to do the optimization challenge to get this.  
 
You will need to copy the base-pair.*.cif files into your working directory. You will find those 
in MMB’s extras directory. Run MMB using the mentioned command file. It will take a few 

minutes. When it is all finished, the last.n.cif file with the highest “n” will contain the 

full spiral of DNA. 
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14 Creating synthetic density 
maps with noise  

14.1  Background and objectives 
 
Your first questions upon seeing this chapter heading might be: what is a synthetic density 
map, why in tarnation would I want one, and why would I want it to be noisy? Allow me to 
explain. In many practical applications, you will download or receive a density map from your 
experimental colleague, who wants you to then build atomic models of macromolecules into 
that map. That’s what we did in the prior chapter, on genome tracing for dsDNA viruses.  
 
However methods development is different from an application. Maybe you want to develop 
a new method for interpreting density maps. Here you might need to CREATE a dataset of 
density maps representing certain molecules. You might do this for a few reasons. First, 
because you can be the one to decide what class of molecules you want your method to deal 
with. Second, because you want to decide how big the map will be, with what grid spacing. 
Third, you might want a large number of such maps. MMB can create such maps, from any 
molecule that it can read in or fold. It basically creates a sphere centered on each atom, and 
the sphere is represented by some density in each grid point within that sphere, with the 
remaining space having zero density. 
 
Such density maps will be nice and clean to look at, you can immediately recognize your 
molecule in them. However experimental density maps are not like this. They have varying 
degrees of noise – departure from such ideal structure. This could be due to thermal motions 
of the molecule in the experiment, biases in the particle picking, problems with image 
alignment, insufficient number of molecules, etc. This is where artificial noise generators 
come in. These add density in a random fashion to your density map, with the goal of making 
synthetic or otherwise high-resolution maps more representative of low-resolution maps you 
might encounter in certain applications, for example dsDNA viral genomes. 
 
I am far from the first to write an artificial noise generator, plenty exist. However after playing 
with them I decided I was not satisfied they made realistic noise. For the most part I suspected 
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it would not be hard to filter out the noise and recover the underlying idealized density. The 
most challenging sort of noise has spatial frequency components that are much like those of 
the underlying ideal structure.  
 
One very common example of noise is blackbody radiation, which is absolutely everywhere in 
the university and in daily life. It explains the spectrum of sunlight, the cosmic background 
radiation, the noise in old-style copper-wire telephone lines, and the color of most glowing-
hot objects. Planck explained the spectrum of the sun by postulating that the sun is analogous 
to an oven with metal walls. The walls could hold standing-waves of energy (which we now 
know to be in the form of photons), with the constraint that their electric field strength would 
be zero at the walls. That means that the permitted wavelengths of light would be such that an 
integer number of half-wavelengths span the oven from wall to wall. If the oven were very 
energetic (high temperature) then very high energy photons could exist, and these would have 
very short wavelengths, with many half-wavelengths fitting between the walls. If the oven were 
colder, then there would only be enough energy to populate the longest-wavelength 
resonances. The additional wrinkle is that there are very few ways to create long-wavelength 
photons, but as the wavelengths get shorter there start to be many more possible ways to fit 
them in the oven. The upshot is that there are very few photons of the lowest energy (because 
there are few such states) and very few photons of the highest energy (because you start to run 
out of energy).  
 
To make a long story short, our noise generator considers that the density map volume being 
generated is an oven, and creates sinewaves of noise which more or less follow Planck’s law. 
Real photons are represented with complex-valued wavefunctions and density maps are real-
valued, so my noise waves have a random phase meaning they don’t go to zero at the volume 
boundaries (that’s one non-realistic part). You can choose the temperature, so if you want 
“snow” like noise with small grains everywhere, choose a lower temperature, and if you want 
big blobs of noise, choose a lower temperature. You can also choose the intensity, which is just 
a scaling factor (make it big if you want more noise). 
 

14.2 Load a density map, and add noise 
 
If you set this parameter to any number greater than 0.0000001, you will activate the density 
map noise generator: 
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densityNoiseScale <float> 

 

You should also choose a temperature (default is 0 which is probably not want you want, and 
it cannot be negative): 
 

densityNoiseTemperature <float> 

 
If you activated the noise generator, you will find in your working directory the following 
maps: 
 
noise.xplor : A map showing ONLY the noise 

density.xplor: A map showing ONLY the original density map 

noisyMap.xplor : A map showing original density PLUS noise 
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15 Virtual assembly of a 
protein-DNA complex 

 
Contributed by Erik Marklund 
 

15.1  Objectives 
Quite often a good experimental structure model for the particular biomolecule that you are 
to study is not available under the specific conditions that you demand. For instance, a protein 
may have been crystallized with the “wrong” ligand, lacking one or a few domains, etc. In such 
cases the combined data from several experiments can still be used to create a reasonable 
structure model that can e.g. be used for subsequent molecular dynamics. In this exercise you 
will see an example of how an existing protein structure model can be used in conjunction 
with sequence data to produce a model of a related protein with maintained protein-ligand 
interactions. There are no new commands in this exercise, but the alignment will go beyond 
the ordinary use of proteinThreading. 

 

15.2 Introduction 
The tetracycline repressor (TetR) regulates the genes for tetracycline resistance in bacteria. It 
is a commonly used system for conditional gene expression and has a high affinity for its 
operator, tetO. There is a X-ray crystallographic structure of operator-bound TetR class D 
(TetRD) in the protein databank (id. 1QPI), but not for the related TetR class B (TetRB). Their 
high level of sequence similarity, however, allows for structural alignment of TetRB onto 
TetRD to yield a structure model of TetRB. Because of the specific interaction with DNA the 
side-chain conformations of the DNA-binding regions require special attention. 
 

15.3 Run MMB 
The input structure file (1QPI) requires little preparation. It contains one monomer from a 
homodimer and one strand from a double stranded DNA helix. The crystallographic symmetry 
found in the pdb file can be used at a later point to generate the homodimer bound to the 
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double stranded DNA helix. Because of that we will only perform a structural alignment of a 
monomer here. 
 
Use the structure model of TetRD as an input file: 
 
cp TetR.cif  last.1.cif .  

 
Then execute MMB to do the actual alignment: 
 
./MMB       –c commands.TetR_threading_TUT.dat 
./MMB  –c commands.TetR_threading_TUT.dat 

 
(depending on your OS). This will thread the TetRB polypeptide chain onto the TetRD 
structure while maintaining the side chain interactions with DNA. 
 

15.4 The command file 
First we set up the environment and instantiate the TetRD and TetRB monomers and the 
DNA: 
 
firstStage 2 

lastStage  2 

reportingInterval 1.0 

numReportingIntervals  50 

temperature 1.0   

removeRigidBodyMomentum false 

 
# TetR class D, bound to DNA 

protein A 4 LNRESVIDAALELLNETGIDGLTTRKLAQKLGIEQPTLYWHVKNKRALLDALAVEILARHHDYSLPAA... 

# TetR class B, no structure 

protein B 4 LDKSKVINSALELLNEVGIEGLTTRKLAQKLGVEQPTLYWHVKNKRALLDALAVEILARHKDYSLPAA... 

 

# DNA 

RNA M 1 CCUAUCAAUGAUAGA 

RNA N 1 UCUAUCAUUGAUAGG 
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Perhaps you notice the high sequence similarity of the regions shown above. The structure of 
TetRD has some stretches of residues that were not resolved in the experiment. The TetRB 
sequence contains the corresponding residues and has additional insertions that will be part 
of the final structure model. This means, however, that care must be taken to align the right 
parts of TetRB to TetRD, as there is not a one-to-one mapping of all residues in the two 
sequences. The DNA molecules (here instantiated as RNA for technical reasons) are not 
necessary for the alignment, but make the final output more comprehensive. 
 
Let’s set up the homology modeling of the backbone: 
 
threading A      4       155     B       4       155 300.0 

threading A      156     198     B       169     211 300.0 

 
Here the insertions create a discrepancy between the two sequences in terms of residue 
numbering, as discussed previously. The same thing affects the mobilizers that keep most of 
the proteins rigid throughout the homology modeling: 
 
mobilizer Rigid A 4 198 

mobilizer Rigid B 4 22 

mobilizer Rigid B 30 34 

mobilizer Rigid B 50 155 

mobilizer Rigid B 169 211 

mobilizer Rigid M 1 15 

mobilizer Rigid N 1 15 

 
The mobilizers above are further complicated by the fact that sidechains that make DNA 
interactions can not be kept rigid, or their final conformations will be off with respect to the 
DNA. Therefore we have split up one rigid part into several shorter ones. 
 
We anchor TetRD and the DNA to the ground: 
 
constrainToGround A 4 

constrainToGround M 1 

constrainToGround N 1 
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15.5  View the results 
Fire up your molecular viewer of choice to inspect your new structure model. last.2.cif only 
contains the monomeric protein and single stranded DNA. Hence you will need to make use 
of the crystallographic symmetry information that is contained in the input structure file.  

15.5.1 Symmetry expansion with PyMOL 

Copy the CRYST1 record from last.1.cif and the coordinates from last.2.cif to a new file: 

 
grep CRYST last.1.cif > TetRB_threaded.cif 

cat last.2.cif >> TetRB_threaded.cif 

 
In PyMOL you can now make a symmetry expansion. Open PyMOL, load the file 

TetRB_threaded.cif,	and	execute	symexp: 

 
Load TetRB_threaded.cif 

symexp S_, TetRB_threaded, all, 1.5 

 
This generates symmetry related copies of the monomeric protein and DNA locally. Note that 
this command is likely to create more copies than you need, so a few newly generated objects 
may need to be deleted from the selections/objects panel to the right. Once you have the 
homodimer you will be able to see if the inserted loops cause any clashes between the 
monomers that may need further processing. As you will see, the inserted loops are nicely 
situated in regions that are not occupied by any other atoms, so the entire structure is a 
plausible structure model of the TetRB-operator complex 
 
The protein-DNA interface of a structurally aligned TetRB homodimer. The homodimer was 
constructed from the monomeric protein and DNA with the help of the symexp command in 

PyMOL. Not only is the structure model devoid of side-chain clashes; the specific interactions 
with DNA were reconstituted in the homology modeling process. 
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15.5.2  Symmetry expansion using other tools 

Unfortunately, VMD currently lacks the capability to create the full homodimer directly from 
the crystallographic symmetry information contained in the pdb file. There are other tools at 
our disposal, however. Examples of such are XPAND (http://xray.bmc.uu.se/usf/) and CCP4 
(http://www.ccp4.ac.uk/), both of which are free to use. Unfortunately, neither XPAND nor 
CCP4 are guaranteed to work out of the box, but if either of them is already present on your 
system you could try to make use of it. Finally, there is a web service – Quat 
(http://sysimm.ifrec.osaka-u.ac.jp/pdb_quat/) – that can do expansions according to both 
crystallographic and non-crystallographic symmetry. Before submitting your structure to 
Quat it is strongly recommended that you remove TetRD from the pdb file! Quat may destroy 
the chain labeling, so it’s better to have as few chains as possible before submitting it. For this 
reason you may choose to also omit the DNA from the Quat input file since it is already 
symmetry expanded. Inspect the structure afterwards to make sure that the symmetry 
expansion produced sensible copies! 
 
In principle the symmetry operations can be done in VMD with the help of rotations and 
translations, but requires some level of familiarity with the crystallographic space groups. In 
this case the other monomer(s) can be generated by rotating all atoms 180 degrees around the 
y-axis followed by translation by half a unit cell along the z-axis. This can also be accomplished 
by putting your favorite scripting language to good use. 
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