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1 What’s new? 
 
Release 2.18 introduced Nucleotide Conformers – NtC’s, which were implemented in MMB 
by Emanuel Peter, Jiri Cerny, and Bohdan Schneider. 
I wrote multiple extensions to our density map fitting code. MMB can now read triclinic 
density maps.  
Michal Tykac of the Cerny Lab modernized the structure file reading and writing, so now it 
can work with the mmCIF format. He also enabled MRC density map reading.  
Release 3.14 includes significant code contributions from Michal Maly, also of the Cerny 
Lab. Michal solved numerous code hygiene issues.   
Release 4.0 has several new features and performance improvements, as follows. We created 
the spiral genome tracer, which allows fast and highly accurate model building and 
optimization (into density maps) of DNA which follows spherical- or cylindrical-spiral 
geometry, for example in the case of viral DNA. As part of this we have made more efficient 
the management of the density map in memory. As a separate matter, Michal Maly is not 
applying NtC forces in a way that is more suitable to MMB’s internal-coordinate framework, 
so you can now make these forces as strong or weak as you wish without any odd 
convergence issues; also the NtC forces run a bit faster. Release 4.1 improved the 
documentation and syntax slightly, and got rid of a few unnecessary internal variables . 
In Release 4.2 I set useCIFFiles to default to TRUE. There were some problems in viral 
genome tracing when the viral diameter became large, and anyway the .pdb format is 
obsolete. 
 
For any published work which uses MMB, please cite one or more of the following: 
 
Samuel Coulbourn Flores, Michal Malý, Dominik Hrebík, Pavel Plevka, Jiří Černý. Are 
kuravirus capsid diameters quantized? The first all-atom genome tracing method for double-
stranded DNA viruses. Nucleic Acids Research, 12 December 2023. DOI: 
10.1093/nar/gkad1153  
Dourado, D. & Flores, S. C. (2014). A multiscale approach to predicting affinity changes in 
protein-protein interfaces. Proteins. doi:10.1002/prot.24634 
Turning limited experimental information intio 3D models of RNA, by Samuel C Flores and 
Russ B Altman, RNA 16(9):1769-78 (2010). 
Predicting RNA structure by multiple template homology modeling, by Samuel C. Flores, 
Yaqi Wan, Rick Russell, and Russ B. Altman (2010)	Proceedings	of	the	Pacific	Symposium	
on	Biocomputing.	
Fast flexible modeling of RNA structure using internal coordinates, by Samuel C. Flores, 
Michael Sherman, Chris Bruns, Peter Eastman,  Russ Altman (2011) Transactions in 
Computational Biology and Bioinformatics 8(5): 1247-57. 
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2 Biopolymers and 
monoAtoms 

 
In this Appendix, we describe how to instantiate biopolymers (RNA, protein), as well as 
single atoms such as counterions.    Note that the number of biopolymers and series of single 
atoms is limited by the number of characters available as chain identifiers. 
 
2.1 Biopolymer sequences and first residue numbers 
 
MMB can instantiate RNA chains using the following syntax: 
 
RNA <chain ID> <first residue #>  <sequence in single letter 
code> 
 
The RNA sequence uses the single letter code (A,U,G,C). Similarly, you can instantiate DNA 
chains like this:  
 
DNA <chain ID> <first residue #>  <sequence in single letter 
code> 
 
The DNA sequence uses the single letter code (A,T,G,C). You can instantiate a protein chain 
as: 
 
protein <chain ID> <first residue #> <sequence in single 
letter code> 
 
The protein chains use the 20 canonical amino acid alphabet for specifying the sequence.   
 
Note that as of release 2.12, you can make the chain ID as long as you wish.  This means that 
you are not limited to the 144 printable ASCII characters.  In the output PDB file, the 
following tag will indicate the long chain ID: 
 
REMARK-SimTK-long-ChainID mySuperLongNameForThisChain 
 
.. where of course “mySuperLongNameForThisChain” will be replaced by whatever 
chain ID you specified. This will be followed by the corresponding ATOM records. The 
ATOM records will have a blank (“ “) in  column 22 (the chain ID column).  Finally, after all 
the ATOM records for that chain have been printed, there will be another tag, like this: 
 
REMARK-SimTK-long-ChainID 
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.. followed by nothing.  This “turns off” the long chain ID specification.  The next chain may 
be a normal chain (single-character chain ID in column 22) or there may be another chain 
with a long ID bracketed by “REMARK-SimTK-long-ChainID” tags as before. 
 
BUT! All that is just a hack to make the .pdb format work better for the big structures MMB 
is so good at handling. Around release 3.3 Michal Tykac added mmCIF file handling. This 
removes the limitation on precision and maximum value of coordinates. It also removes the 
limitation on number of characters in chain IDs. The only downside in my view is that it 
becomes a little harder to manually manipulate structure files. Luckily MMB can read in one 
format and write in another, so you should still be able to go back to the .pdb format if you 
need to. 
 
There is one more way to instantiate sequences, which works for protein, RNA, and DNA.  
You can issue the command: 
 
loadSequencesFromPdb  
 
And MMB will go to your input structure file (last.??.pdb) and look for RNA and protein 
chains.  It will extract the chain ID’s, residue numbers, insertion codes, and residue types 
from there.  It will also match the internal coordinates to the Cartesian coordinates it finds 
there, as usual.  You will then be able to issue commands that involve residues in those 
chains, as before.  Please note that you CANNOT use this command with long chain IDs, it 
just won’t work.  If you have long chain IDs, just instantiate the chains explicitly.   
 
In addition to removing the need for you to specify these chains manually, this command  
also has the advantage of handling insertion codes and gaps in the numbering.  You will be 
able to append an insertion code to the right of the residue number in any command, e.g. 
constrainToGround A 130B (where B is an insertion code).   
 
The residue numbers and insertion codes do need to be increasing from the top to the bottom 
of the input structure file, though.  Before using this command, you should clean up the input 
structure file, removing anything that is not RNA or protein – including DNA, water, ions, or 
other molecules.   
Whether you use loadSequencesFromPdb or specify the sequences manually,   it is 
possible to use the +/- operators to increment or decrement a residue ID by some number of 
residues.  For instance,  
 
constrainToGround A 130A+2 
constrainToGround A 130A-1 
 
will constrain residues two residues to the C-terminus and one residue to the N-terminus of 
32B.  Do not insert any spaces between the +/- operators and either of their arguments. You 
can use the +/- operators with any command that takes residue numbers as an argument. You 
can also use user variables (which begin with “@,” explained elsewhere in this document). 
 
2.2 Clarifying arithmetic operations on residue numbers 
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Let’s clarify the +/- operators for residue numbers a little more. In the context of residue 
numbers, the leftmost term in such an expression MUST be a real residue number that exists 
in the biopolymer. The remaining terms are strictly integers which will be summed to 
determine the increment/decrement along the sequence to be applied to the residue number. 
For example, assume the first residue number is 129. Then this is OK: 
 
@myRes 130 
mobilizer Rigid A @myRes+1  @myRes+1+1 
mobilizer Rigid A @myRes+1  @myRes+2-1 
 
The expressions evaluate as:  
 
@myRes+1 :  If the residue that follows 130 in chain A is  130A, it will return 130A. This 
is not an integer sum. Note that residue 130 MUST exist, or an error will be tripped. 
@myRes+1+1 : This will first sum all terms except the leftmost, strictly arithmetically, and 
get 1+1 = 2.  If the residue that follows 130A is 130B, then it will take the residue number 
130, go 2 places towards the end terminus, and return 130B.   
@myRes+2-1 : This will return 130A in this example. 
 
This is NOT OK : 
 
mobilizer Rigid A 1+@myRes  1+1+@myRes 
 
1+@myRes  : MMB will look for a residue 1 .. and not find it (in this example the 
biopolymer begins at residue 129. It will then throw an error. MMB will NOT conclude that 
you are looking for 131, even if 131 does exist on chain A.  
 
As mentioned earlier, insertion codes are OK: 
 
130A+1   : is OK, and will return whatever the next residue actually is in the biopolymer, 
in this example 130B. 
130A+@myRes : is OK, if there are indeed at least 130 residues following 130A. if the 
portion of the biopolymer after 130A is shorter than this, then it will throw an error. 
 
1+125A : is NOT OK, even if residue 1 exists. Because 125A is not an integer. Anything 
terms other than the first must be integers. 
 
Note that for commands that do NOT expect a residue number, arithmetic operators, 
numbers, and user variables can be in any order. Later on when we talk about Lepton you 
will see that you are not limited to +/-, but have a wide variety of math operations available 
to you, though for residue numbers you should stick to +/-. 
 
 
2.3 monoAtoms 
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The monoAtoms command specifies single atoms (e.g. monatomic ions) The syntax 
follows:  
 
monoAtoms <chain ID> <first residue #> <# of atoms> <name of 
atom> 
 
Currently only the following atom names are supported: 
 
Mg+2, Cl-, Na+, K+, Li+, Ca+2, Cs+, Rb+ 
 
The single atoms created with this command support the atomSpring, atomTether, 
springToGround, and constrainToGround commands, just like the biopolymers.  
They do not support the mobilizer command. The constraint command works with 
monoAtoms to some degree. monoAtoms are automatically added to the physics zone. 
You can read the positions of monoAtoms from your input PDB file. You have to be careful 
with atom and residue names in that file though.  For example, for a magnesium ion, the 
atom name should be “Mg+2”, while the residue name should be “MG”. Note that this is 
different from the PDB convention, in which both atom and residue name are “MG”. 
 
2.4 Water droplets 
 
The waterDroplet command puts a water droplet of a specified <droplet 
chainID>  and <radius> about the point <X> <Y> <Z>. There are tethers (with 
optional parameter [tether strength]) which constrain the water to a distance of  1.1 
* <radius> about <X> <Y> <Z>. The syntax is: 
 
waterDroplet <droplet chainID>  <X> <Y> <Z> <radius>  
 [tether strength] 
 
Alternatively, you can provide a biopolymer (protein, RNA, or DNA) chain ID and residue 
number, and the water droplet will be centered about that residue: 
 
waterDropletAboutResidue <biopolymer chain ID>    

<biopolymer Residue Number> <radius> <tether strength>  
<water droplet chain ID> 

 

3 A word about units 
 
I am making a special, very short chapter on units. In MMB 2.10 and earlier, some forces 
such as atomSpring, springToGround, atomTether, etc. took Å as the unit for dead lengths 
and ground locations. For consistency, we are going back to nm for the length unit. This is 
because internally all the math is done in nm, kJ/mol, ps, and daltons (g/mol).  This implies 



   Forces
    

 

15 

that spring constants are in kJ/mol/nm2. For example, if you want to make a spring which in 
Amber99 units (Å, kcal/mol, ps) would be 310 kcal/mol/Å2, the equivalent spring in our 
choice of units would be 129790.8 kJ/mol/nm2.  
Please note that if you have any dead lengths or ground locations  in your MMB 2.10 or 
earlier script which you are using with MMB 2.11, you will need to manually change them 
from Å to nm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4 Forces 
 
In this Appendix, we describe options for using the baseInteraction, aromatic 
two-residue forces, the atomSpring, atomTether, and springToGround 
forces, and the contact steric forces.  Note that since forces are additive, there is no 
hard limit on how many forces can exist in the system or even acting on a single residue, 
base, or atom.    
 
4.1 baseInteraction 
The syntax for this command is: 
 
baseInteraction  <chain identifier for first residue>   

<residue number for first residue>  
<interacting edge for first residue>  
<chain identifier for second residue>   
<residue number for second residue>  
<interacting edge for second residue>   
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<glycosidic bond orientation>  
 
The following combinations of first base pairing edge, second base pairing edge, and 
glycosidic bond orientation are permitted: 
 
WatsonCrick WatsonCrick Cis 
WatsonCrick WatsonCrick Trans 
 
WatsonCrick Hoogsteen Cis 
WatsonCrick Hoogsteen Trans 
 
WatsonCrick SugarEdge Cis 
WatsonCrick SugarEdge Trans 
 
Hoogsteen Hoogsteen Cis 
Hoogsteen Hoogsteen Trans 
 
Hoogsteen SugarEdge Cis 
Hoogsteen SugarEdge Trans 
 
SugarEdge SugarEdge Cis 
SugarEdge SugarEdge Trans 
 
WatsonCrick Bifurcated Cis 
Stacking3 Stacking5 Cis 
Stacking5 Stacking5 Trans 
Stacking3 Stacking3 Trans 
HelicalStackingA3 HelicalStackingA5 Cis 
Superimpose Superimpose Cis 
 
You might notice that some of these are actually not in the Leontis and Westhof 
classification.  These are explained below: 

• Stacking* simply specifies a stacking interaction between consecutive residues on a 
chain.  The numbers indicate which face is interacting on each base.  For example:   
baseInteraction A 120 Stacking3 A 121 Stacking5 Cis  
 
Means that the face of base 120 which would ordinarily point towards the 3’ end of 
the strand in a helix, will be stacked on the face of base 121 which would ordinarily 
point to the 5’ end of the helix. 
 

• HelicalStacking* works the same as Stacking, but adds the offset appropriate for 
consecutive bases in a helix.  HelicalStackingA3/HelicalStackingA5 is automatically 
applied to all consecutive bases in helices, unless you specify 
setHelicalStacking FALSE.   MMB assumes an A-form helix exists 
whenever it finds three consecutively numbered RNA residues on a single strand 
Watson-Crick base paired with three consecutively numbered residues on the same or 
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another single RNA strand.  If you want to generate a helix where this is not the case, 
you should manually apply HelicalStackingA3 / HelicalStackingA5  interactions.  
 
 

4.2 nucleicAcidDuplex 
 
This command generates WatsonCrick/WatsonCrick/Cis interactions between two specified 
segments on the same or different RNA chains.  It is a shortcut for manually specifying each 
such interaction for every pair of canonically interacting residues in the duplex.  The syntax 
is: 
nucleicAcidDuplex  <chain identifier A>   

<first residue on A>  
<last residue on A>  
<chain identifier B>   
<first residue on B>  
<last residue on B> 

  
 
Recalling that the duplex is antiparallel, we require that: 
(first residue on A) < (last residue on A) 
and 
(first residue on B) > (last residue on B) 
 
For example: 
 
nucleicAcidDuplex A 1 3 A 10 8 
 
Makes the segments between residues 1 and 3 (inclusive) and between 10 and 8 (inclusive) 
into two halves of a duplex, by applying a base pairing interaction between 1 and 10, 2 and 9, 
and 3 and 8.  

 
4.3 NtC 
 
This command is new to 17.8. Previously, we would use baseInteraction’s  to impose the bse 
stacking geometry in double helices. These we would even impose automatically whenever 
three consecutive Watson-Crick base pairs were detected. Actually you should now turn off 
that behavior if you want to use NtC’s: 
 
setHelicalStacking False 
 
WatsonCrick/WatsonCrick/Cis interactions between two specified segments on the same or 
different RNA chains.  It is a shortcut for manually specifying each such interaction for every 
pair of canonically interacting residues in the duplex.  The syntax is: 
NtC  <chain identifier>   

<first residue number>  
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<second residue number. Can be the next 
consecutive residue. Or you can specify any 
higher-numbered residue on the same chain, and 
thus apply the NtC to every consecutive pair of 
residues in that stretch.>  

<NtC class>   
<force constant>  

  
 
For example to force the consecutive residues 1-2, and 2-3 on chain D, into A-form helical 
stacking, with force constant 1.5, we would issue: 
 
NtC D 1 3 AA00 1.5 
As a side note, the force constant 1.5 for NtCs, and forceMultiplier of about 200 for 
the baseInteraction’s, seem to be a pretty good combination for many purposes.  
 
4.4 atomSpring 
 
The atomSpring command creates a linear spring connecting two atoms.   Two optional 
parameters  (square braces []) specify the dead length and spring force constant. 
 
 atomSpring  <first chain ID> 
   <first residue number> 
   <first atom name> 
   <second chain ID> 
   <second residue number> 
   <second atom name> 
   [<dead length> 
   [<spring constant>]] 
 
 
4.5 atomTether 
 
The atomTether command, as the name implies, applies no force if the distance between 
atoms is less than a certain <dead length>,  and applies an attractive force with 
Hookean  <spring constant> when the distance exceeds the former.  Default values 
for the last two parameters are 0.0 and 3.0, respectively, as they are for atomSpring.  
Make <spring constant> large for a strict “dog leash” or small for a permissive 
restraint. 
 
 atomTether  <first chain ID> 
   <first residue number> 
   <first atom name> 
   <second chain ID> 
   <second residue number> 
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   <second atom name> 
   [<dead length> 
   [<spring constant>]] 
 
 
4.6 springToGround 
 
The springToGround command creates a linear spring connecting a specified atom and a 
specified location in Ground.   Two optional parameters  (square braces []) specify the dead 
length and spring force constant. 
 
 springToGround  <atom chain ID> 
    <atom residue number> 
    <atom name> 
    <X location in Ground> 
    <Y location in Ground> 
    <Z location in Ground> 
    [<dead length> [<force constant>]] 
 
4.7 alignmentForces 
 
The alignmentForces command supersedes the old threading and 
gappedThreading commands.  Like those commands, it applies cross-strand springs 
connecting like-named atoms in sequence-aligned residues. By default it does not require an 
alignment; instead it figures out a gapped alignment for you using a dynamic programming 
algorithm (thanks Seqan!). This command should work with any biopolymer type. Syntax is 
below.  
 
 alignmentForces  <chain 1 ID> 
    <chain 2 ID> 
 
Note that this is not always better than just using threading. We use only a very simple 
scoring function (1 point for an exactly matching residue, 0 for a mismatch) for the 
alignment. In some cases, you may get better results by providing your own alignment and 
using threading .  
 
You can also specify the stretches of residues to be aligned (e.g. if you want to align based on 
a certain domain). Actually I strongly recommend doing this, because whereas it is easy to 
get a slightly (or terribly) incorrect alignment based on the full length sequence, if you tell it 
domain boundaries you will probably agree with the alignment. Anyway, it works like this: 
alignmentForces  <chain 1 ID> 
    <start residue 1> 
    <end residue 1> 
    <chain 2 ID> 
    <start residue 2> 



FORCES 

 

20 

    <end residue 2> 
 
If you want to provide your own alignment, rather than letting MMB align the sequences for 
you, issue:  
 
alignmentForces  NoGap 
 
Recall that in MMB files are read from top to bottom, so the last parameter set PRIOR to the 
execute command (e.g. alignmentForces A B) prevails for that execute command. 
Parameters set AFTER a given execute command do not affect that command. In any event, 
if you want to later re-enable gapped alignments, issue: 
 
alignmentForces  Gapped 
 
The coolest new feature that comes with alignmentForces is one which allows you to 
set the dead lengths of the springs not to zero as before, but to some specified fraction of 
their initial lengths. Issue: 
 
alignmentForces deadLengthFraction <fraction>  
 
.. where if <fraction> in the interval (0,1], the springs will be set to <fraction> * 
(initial length).  By default,  <fraction> is zero, exactly like the old behavior. 
If you want to return to that behavior, explicitly set this to zero.  
Lastly, the spring constant is now set separately from the actual alignment command: 
 
alignmentForces forceConstant <force constant>  
 
.. where if <force constant> should be > 0.0. 
 
The only behavior which has been lost in alignmentForces is the old backbone-only 
threading, but I can reinstate it upon request. 
 
 
 
4.8 contact 
 
You can also apply space-filling Contact spheres to a range of residues using the contact 
command.  (The idea is similar to that of the parameters addSelectedAtoms and 
addAllHeavyAtomSterics) 
 
contact   <contact type>  

<chain identifier>   
<residue number for first residue>  
<residue number for last residue>  
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The first residue should be lower numbered than the second, and both residues should be on 
the same chain.  You can also issue: 
 
contact   <contact type>  

<chain identifier>   
 
And the contact spheres will be applied to every residue on the specified chain. 
 
There are two kinds of permitted values of contact type.  In the fixed type, the atom 
identities are hard-coded and can’t be modified by the user, but the contact sphere radii and 
stiffness (both of which are the same for all atoms regardless of atom name) correspond to 
the excludedVolumeRadius and excludedVolumeStiffness parameters which 
are set in the MMB input file (e.g. commands.dat).  These include: 
  
AllAtomSterics     : Puts one sphere on each atom of the chain, except for 
the end caps on proteins (when used). 
AllHeavyAtomSterics  : Puts one sphere on each atom of the chain EXCEPT 
hydroges, and again except for the end caps on proteins.  
RNABackboneSterics   : Puts one sphere on each of the following atoms: P, 
O5*, C5*, C4*, C3*, and O3*.  An error will result from attempting to apply this to proteins, 
as anytime when you attempt to put sterics on an atom which doesn’t exist on a given 
residue. 
 
The second type of sterics are user configurable, in the parameter file (e.g. parameters.csv).  
Here the user can choose on which atoms to put the spheres, with a maximum of four atoms.  
The radii and stiffness can be controlled separately for each atom name.  A different choice 
of zero to four atom names can be chosen for each residue type (4 residue types for RNA, 20 
for protein).  The user can add as many steric schemes to the parameter file as he/she wishes; 
as supplied the parameters.csv file has two: SelectedAtoms and 
ProteinBackboneSterics.  For the first one, the parameters look like:   
 
 
RECORD A    SelectedAtoms SelectedAtoms X P C4* N9 
RECORD C    SelectedAtoms SelectedAtoms X P C4* N1 
RECORD G    SelectedAtoms SelectedAtoms X P C4* N9 
RECORD U    SelectedAtoms SelectedAtoms X P C4* N1 

 
The second column is the residue type, and columns 7,8, and 9 are the atom names.  Note 
that the glycosidic nitrogen is named differently for purines vs. pyrimidines.  Subsequent 
columns give the sphere radii, stiffnesses, and information to identify these as contact 
parameter entries.  Parameters become available for use immediately upon being entered 
in the parameter file, much as for MD force field parameter files. 
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It is also possible to apply a specified steric scheme to all residues within a certain distance 
of a specified residue. The distance is measured by between representative atoms – Cα for 
proteins, C4* for RNA and DNA. The syntax is: 
 
applyContactsWithin <radius (nm)> <contact scheme> <chain> 
<residue> 
 
 
4.9 Restraining to ground 
 
 
Much as residues can be constrained to each other (see next chapter), any residue of any 
chain can also be restrained to ground, meaning that a force can be applied to pull all six 
translational-rotational degrees of freedom to an equilibrium position and orientation in 
Ground: 
 
restrainToGround <chain ID> <residue number> 
 
Keep in mind that unlike a constraint, a restraint acts as a spring and thus allows some 
displacement with respect to ground.  Any   displacement at the end of a stage is carried over 
to the next stage, potentially leading to a “creeping” effect.  Two parameters which are 
relevant to this command are restrainingForceConstant and 
restrainingTorqueConstant.  These set the translational and angular restitution 
force constants. 
 
4.10 Density based force field  
 
As explained in the tutorial, MMB’s density based force field is formulated following Klaus 
Schulten’s MDFF as follows:  
𝐹!""⃑ = 𝐾 ∙ ∇""⃑ (𝐷(𝑥!"""⃑ )- ∙ 𝐴" 
Where i is the atom index, Ai is the atomic number of atom i, 𝐷(𝑥!"""⃑ )	is the electronic density 
at the nuclear position of atom i, K is a user-adjusted scaling factor, and ∇""⃑  is the gradient 
operator. Accordingly, 𝐹!""⃑ 	 is the density-derived force vector applied to atom i. This is 
computed for and applied to every atom i in the system. 
 
To turn on the density based force field on or off, you just need to specify which chains you 
want to be subjected to such forces.  For instance: 
 
fitToDensity 
  
Specifes that all chains in the system should be fitted to the map.  If you only want certain 
chains to be fitted, with the remaining chains not subjected to these forces, just specify each 
chain to be fitted like this: 
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fitToDensity <chain ID> 
 
Lastly, if you only want certain stretches of residues to be fitted, you can issue: 
  
fitToDensity <chain ID> <start residue> <end residue> 
 
.. and only the residues starting at <start residue> and ending at <end residue> 
of chain  <chain ID> will feel fitting forces. 
 
Your density map must be in MRC, XPLOR, OpenDX or Situs format.  To specify the 
location of the density map, file, use: 
 
densityFileName <density file name> 
 
The scaling factor (A in the equation above) defaults to unity, but you can set it to any 
floating point number (including negative numbers) as follows: 
 
 densityForceConstant  <scale factor> 
 
4.11 Electrostatic Density force-field 
 
On the same idea as the Density Map fitting, you can provide MMB with an Electrostatic 
Potential grid, typically from APBS. The residues you select for fitting will then be driven 
into the map according to the partial charges of the atoms. Negative ones will tend to go in 
positive volumes and positive ones to negative volumes. 
As MMB use Amber to determine the atoms charges, it is strongly recommended to use an 
electrostatic map computed with an Amber force field. 
 
The usage is exactly the same as described for fitToDensity with the following 
commands: 
fitElectroDensity 

electroDensityFileName 

electroDensityForceConstant 

 
4.12 Physics where you want it 
 
Physics where you want it, introduced in release 2.4, allows you to turn on the all-atoms 
force field only for certain regions of your system, referred to as the physics zone.  
 
To specify a range of residues to be added to the physics zone, use: 
 
includeResidues <chain ID> <first residue in range> <last 
residue in range> 
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Sometimes it will be convenient to include all residues within a certain radius of a specified 
residue.  For this you would use: 
 
includeAllResiduesWithin <distance> <chain ID> <residue 
number> 
 
Note that includeResiduesWithin is an alias for 
includeAllResiduesWithin . The distance (in Å) is measured between key 
atoms, CA for protein and C4* for RNA and DNA. 
 
You can also simply set physicsRadius to a value > 0.  If this is set, all residues within 
physicsRadius of the “flexible”atoms will be included in the physics zone. “Flexible” 
atoms are defined as atoms belonging to a mobilized body of mass < 40. This is technically a 
parameter rather than a command, so is listed in that section separately. The syntax is just:  
 
physicsRadius <radius> 
 
Default behavior is for all atoms to be subjected to the non-bonded force field terms.  If that 
is what you want, just don’t specify either of the above commands. 
 
You can create physics zones at all interfaces between atoms belonging to different 
mobilized bodies. For example, if you have a domain hinge bending protein, with the hinge 
flexible, it would add the hinge plus residues at the domain-domain interface to the physics 
zone. something to watch out for, is that a discontinuous domain would get its inter-fragment 
interface added to the physics zone. Syntax is: 
includeIntraChainInterfaceResidues <chain> <depth> 
Where <chain> is the biopolymer chain ID in question, and <depth> is the greatest atom-
atom distance, with atoms of different mobilized body index, that will lead to those atoms 
being included in the physics zone. 
 
You can also add specified inter-chain interfaces to the physics zone. In the most general 
polymorphism, you can specify the interface between one chain or set of chains, and another 
chain or set of chains: 

physicsInterfaces <depth (nm)> <chain 1> [<chain 2> 
[<chain 3> [ ...etc]]]  Versus <chain 1> [<chain 2> [<chain 3> 
[ ...etc]]] 
 
.. You can call this command to get an informative message about the other polymorphisms. 
 
Lastly, we have found that small chemical groups such as methyl or alcohol can spin out of 
control in the absence of viscous forces, leading to small time steps and excessive 
computational expense.  To deal with this, you can scale the inertia of such small groups 
with:  
 
smallGroupInertiaMultiplier <inertia scale factor> 
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Any nonnegative floating point number can be used here; we suggest 11.0. 
 
4.13 Potential rescaling with the “Scrubber”  
 
In Flores and Altman (RNA 2010) we found that kinetic trapping occurs often in 
computational RNA folding, as it does experimentally.  To get out of these traps we created 
the scrubber. Potential rescaling refers to cyclically varying forces. In MMB, we use a 
rectangular waveform.   For a fraction of the time (1 - dutyCycle) all forces (including 
baseInteraction’s, sterics, Amber99 force field, springToGround’s, etc.) will be turned off. 
Then for the remainder of the period  (dutyCycle) these forces will be turned back on.  
The length of the period is set with the scrubberPeriod parameter (in ps, as always).  
 
dutyCycle <”on” fraction>  
scrubberPeriod <potential rescaling period, in ps> 
 
This is used in some of the MMB tutorial examples.  You may also find the explanation in 
the tutorial guide more intuitive. 
 
4.14 addRingClosingBond 
 
This add a ring closing bond. It only creates bonds between atoms in the same chain. Use it 
like this: 
 
addRingClosingBond <chainID> <residueID1> <atomName1> 
<bondCenterName1>  <residueID2>  <atomName2> <bondCenterName2> 
 
bondCenter’s are named as e.g. bond1, bond2, .. bondN. For example, in a 
disulphide bridge (bonding atoms SG), you need to specify bond1, since bond1 is 
bonding to CB. 
 

5 Mobilizers and constraints 
 
In this Appendix we describe mobilizer commands, which define or modify the internal 
coordinate topology of the molecule as well as constraint commands, which  add 
constraint equations that reduce the degrees of freedom of the system.   
 
It is important to keep in mind the crucial difference between these two in Internal 
Coordinate Mechanics.  A mobilizer command can reduce or increase the number of 
bodies that exist in a system; in the former case you will always save computer time.  On the 
other hand a constraint command adds constraint equations which must then be solved; 
while the net effect depends on masses and forces, computational cost typically increases. 
Mobilizers control bond mobilities, which here can be Free, Torsion, or Rigid.  
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Free  means that the bond can change its length, angle, and dihedral.  
Torsion means it can change only its dihedral angle.  
Rigid means it has no degrees of freedom.  
 
One must also avoid overconstraining the system.  For example, if two rigid molecules are 
already Weld’ed (see below) to each other, do not put additional constraints on this pair of 
molecules, even if they are nominally applied to different residues.  While this is easy to keep 
track of for two bodies, watch out for more insidious ways of overconstraining.  For example, 
if A is Weld’ed to  B, and B is Weld’ed to C, do not then Weld C to A. 
 
5.1 mobilizer 
 
The mobilizer keyword is used for specifying the bond mobilities for a stretch of 
residues.  This command is overloaded.  The first variant has the following syntax: 
 
mobilizer  <bond mobility>  

<chain identifier>   
<first residue number>  
<last residue number>  

 
The first residue should be lower numbered than the second, and both residues should be on 
the same chain. Bond mobility can be set to Free, Torsion, Rigid, or Default. 
The “Default” bond mobility is special, as we’ll explain in a moment. Don’t forget you 
can use the keywords FirstResidue or LastResidue, or do arithmetic on the residue 
numbers using the “+” operator, as described earlier. 
 
You can also simply say: 
mobilizer  <bond mobility>  

<chain identifier>   
 
… and this will set ALL residues in chain <chain identifier> to <bond 
mobility>.   
 
Lastly, you can say: 
mobilizer  <bond mobility>  
 
... and this will set all residues in ALL chains to <bond mobility>. 
 
 
 
5.2 applyMobilizersWithin 
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The applyMobilizersWithin command is used to specifying the bond mobilities for 
all biopolymer residues within a certain radius of a specified residue.  It has the following 
syntax: 
 
applyMobilizersWithin <bond mobility>  

<radius>   
<chain identifier>   
<residue ID>  

 
The radius is measured between representative atoms (Cα for protein, C4* for nucleic 
acids) and (like always) in nm.  The acceptable values of <bond mobility> are as listed 
above.   
 
5.3 mobilizeInterfaces  
 
The mobilizeInterfaces command is used to specifying the bond mobilities for all 
biopolymer residues within a certain distance of all interfaces of a given biopolymer chain or 
chains. The syntax is: 
 
mobilizeInterfaces <interface depth>  

<bond mobility>   
<chain 1> [<chain 2> [<chain 3> […etc]]]   

 
The <interface depth> is measured as the minimum distance between atoms on 
different chains across an interface. Note that this counts over all atoms, not just the Cα or 
C3*. We are now using OpenMM’s neighborlisting for this, which is pretty economical even 
if you aren’t set up to use the GPU. <bond mobility> is that desired at the interface – 
Rigid, Torsion, Free, or Default. <chain 1,2, etc>  is the list of chains 
forming a complex, whose interfaces with the rest of the system you are interested in.  For 
example, say you have a complex of chains A, B, and E.  If you issue: 
  
mobilizeInterfaces 0.6 Default A B 
 
Then all residues at the interface between the complex AB, and chain E, to a depth of 0.6 nm, 
will get bond mobility Default.  Note that this will do nothing in particular to the 
interface between A and B! In this case you could just as easily have issued: 
 
mobilizeInterfaces 0.6 Default E 
 
If you like to be explicit (a good habit, by the way), you can use the alternate syntax: 
 
mobilizeInterfaces <interface depth>  

<bond mobility>   
<chain 1> [<chain 2> [<chain 3> […etc]]]   
Versus 



MOBILIZERS AND CONSTRAINTS 

 

28 

<chain I> [<chain II> [<chain III> 
[…etc]]]   

 
 
This sets the bond mobility to <bond mobility>, to a depth of interface depth>, 
for the interface between the set of chains (1,2,3..) and the chains (I,II,III..).  In our example, 
you would issue: 
 
mobilizeInterfaces 0.6 Default A B Versus E 
 
5.4 singleBondMobility 
 
The singleBondMobility command is used for specifying the bond mobility for a 
single bond: 
 
singleBondMobility  <chain identifier for first atom>   

<residue number for first atom>  
<atom name for first atom>  
<bond mobility>  
<chain identifier for second atom >   
<residue number for second atom >  
<atom name for second atom>  

 
The two atoms should be covalently bonded to each other, of course.  
 
 
5.5 psiPhiMobility 
 
psiPhiMobility is used for specifying the bond mobility for the bonds connecting the 
N to CA, and the CA to C on the protein backbone, along a given stretch of residues.  It is 
equivalent to issuing the singleBondMobility command for the two mentioned bonds, 
for each residue in the range. 
 
psiPhiMobility <chain ID>   

<residue number for first residue in range>  
<residue number for last residue in range>  
<bond mobility (Free, Torsion, or Rigid)>  

 
You can also skip the residue numbers: 
psiPhiMobility <chain ID>   

<bond mobility (Free, Torsion, or Rigid)>  
 
.. and this will apply mobilizers to whole chain, from first to last residue. Lastly, you can skip 
the chain ID: 
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psiPhiMobility <bond mobility (Free, Torsion, or Rigid)> 
 
.. and this will apply mobilizers to whole chain, for every protein chain in the system. 
 
psiPhiMobility is simply a shortcut for a bunch of singleBondMobility 
commands, and so works in exactly the same way as the latter.  This means that it is applied 
late – see the section “Order of application of mobilizers.”  
 
5.6 Default mobilizers 
 
It is important to understand what is the default setting for the mobilizers in your system. 
 
The default bond mobility leaves most bonds set to Torsion, but there are also some 
Rigid bonds, depending on the residue type and atoms it connects.  For instance, the bond 
mobilities for an RNA residue look like this: 
 

 
 

Figure 1 : Default bond mobilities for an RNA residue 

Black:  Rigid; Red:  Torsion; Yellow: Free. 

 
Similarly for a protein residue, most bonds are also Torsion. There are certain bonds and 
groups that are set to Rigid:  
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All peptide bonds (C-N) 
All covalent bonds between hydrogens and heavy atoms 
Proline N-Cα (This may be changed to Torsion) 
Guanidinium group (Arginine CZ-NH1, CZ-NH1, CZ-NE) 
Amide groups (Asparagine Cγ-Nδ2, Glutamine Cδ-NE2) 
Cyclic groups in Tryptophan, Histidine, Phenylalanine, Tyrosine. EXCEPT that ring closing 
bonds are special (nonexistent topologically, subject to bonded MD force field terms): 
 Tryptophan Cδ2-Cγ, CZ3-CH2 
 Histidine, Tyrosine and Phenylalanine Cδ2-Cγ 
 Proline Cδ-N  
 
 
 

 
Figure 2 : Bond mobilities for proteins. By default, most bonds have Torsion bond 
mobility (red). Peptide bonds are Rigid, as are guanidinium and amide groups. 
Hydrogens and double-bonded oxygens are also connected with Rigid bonds. The user 
can create a ring closing bond which will have Free bond mobility.  Ring closing bonds 
are special in that they do not topologically connect atoms, only apply bonded forces 
(bond stretch, angle bend, dihedral) – recall that closed cycles are not desirable in 
internal coordinates.  Cyclic groups of Histidine, Tryptophan, Phenylalanine, and 
Tyrosine (but not Proline) are connected with Rigid bonds and so form a single body; the 
ring closing bonds do not change this. Peptide bonds are Rigid. All of these default bond 
mobilities can be overridden by the user. For example, the segments on either end of the 
chain have here been made Rigid. Lastly, the user can also create a disulphide bridge 
between cysteines using a ring closing bond (inset).  
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5.7 Order of application of mobilizers 
 
In order to get the desired result out of MMB, you should understand the order in which these 
commands are applied.  They go like this: 
 

1.  mobilizer (for Rigid, Free, and Torsion) 
2. applyMobilizersWithin (for Rigid, Free, and Torsion) 
3. mobilizeInterfaces (for Rigid, Free, and Torsion) 
4. mobilizer, applyMobilizersWithin, and mobilizeInterfaces (for 

Default) 
5. singleBondMobility (incl. psiPhiMobility) 

 
 
 A common mistake is to forget that before any commands are applied, all chains have a 
default bond mobility, as described above.  Note also that the “Default” bond mobility 
isn’t actively applied to residues – instead when you specify this, all other modifications to 
the residue bond mobility are removed, so it is simply never changed from its original bond 
mobility.   
 
Here is a simple example: 
 
protein A 1 AAAAAA 
mobilizer Rigid A 1 6 
mobilizer Default A 3 4 
 
Results in two Rigid stretches (1 to 2 and 5 to 6) – the output looks something like this: 
 
src/MobilizerContainer.cpp:44 Mobilizer stretch 0 BondMobility 
= Rigid 
src/MobilizerContainer.cpp:45 chain= A from residue 1 to 2 
/Users/Sam/svn/RNAToolbox/trunk/src/MobilizerContainer.cpp:44 
Mobilizer stretch 1 BondMobility = Rigid 
src/MobilizerContainer.cpp:45 chain= A from residue 5 to 6 
 
 
 
5.8 constraint 
 
The constraint command is used for specifying constraints to weld residues or 
monoAtoms together: 
constraint  <chain identifier for first residue>   

<residue number for first residue>  
Weld  
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<chain identifier for second residue>   
<residue number for second residue>  

 
The two welded residues can be on different chains; in fact either or both residues can be in 
RNA or protein chains.  The weld is applied on C3* atoms of RNA residues and on C atom s 
of protein residues.  There is no preference for residue number ordering.    
 
You can also specify which atoms you want welded, as follows: 
 
constraint  <first atom chain identifier>   

<first atom residue>  
<first atom name>  
Weld  
<second atom chain identifier>   
<second atom residue number>  
<second atom name>  
 

Lastly, you can weld to ground, either specifying the atom to be welded or using the default:  
 
constraint  <chain identifier>   

<residue number >  
<atom name>  
Weld Ground 
 

or: 
 
constraint  <chain identifier>   

<residue number >  
Weld Ground 

 
This syntax treats monoAtoms and biopolymer atoms on an equal footing, except that in the 
case of monoAtoms you cannot avoid providing  the atom name. 
 
 
5.9 Constraining to ground 
 
 
Just as residues can be constrained to each other, any residue of any chain can also be 
constrained (rigidly attached) to ground: 
 
constrainToGround <chain ID> <residue number> 
 
See Appendix: Parameters for an explanation of the constraintTolerance parameter, 
relevant to this command. 
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Much more efficient are a couple of variants of this command.  For example: 
 
constrainToGround  
 
(with no parameters) attaches each chain to ground using a Weld rather than a Free 
mobilizer.  Thus rather than granting 6 DOFs and then removing them with constrain 
equations, the DOFs never exist to begin with. 
 
Similiarly, you can choose the mobilizer type (Free vs. Weld) for all chains by issuing: 
 
rootMobilizer <"Free" | "Weld"> 
 
Or, you can choose the mobilizer type for a specific chain by issuing: 
 
rootMobilizer <Chain> <"Free" | "Weld"> 
 
5.10 Constraining rigid segments to each other or to ground 
 
In the antibody design example (see Tutorial), we have a protein which has two rigid 
segments and one flexible segment.  To prevent the two rigid segments from moving with 
respect to ground, we welded them to ground. Alternatively, maybe we could have welded 
the rigid segments to each other, so the protein as a whole could move with respect to its 
binding partner (or ground, for that matter). Sometimes you may want a chain to have many 
rigid segments, all welded either to ground or to a specified residue.  MMB has a convenient 
command for this.   
 
If you want to weld all rigid segments of all chains to ground, just issue: 
 
constrainChainRigidSegments  
 
If you want to weld the rigid segments of a specified chain to ground, issue: 
 
constrainChainRigidSegments <chain ID> Ground  
 
where <chain ID>  refers to the chain in question. 
 
Lastly, if you want to weld the rigid segments of a specified chain to a specified residue (on 
the same chain), issue: 
 
constrainChainRigidSegments <chain ID> <residue ID>  
 
In this latter case, all the rigid segments in chain <chain ID> will be welded to the same 
residue <residue ID>.  This means that the rigid segments will move together, allowing 
rigid body motions of the entire chain.  If you want several chains to move together, just add 
a constraint command. 
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5.11 constrainInterfaces 
 
The constrainInterfaces command is used to apply a Weld constraint across one 
or more pairs of biopolymer chains. within a certain distance of all interfaces of a given 
biopolymer chain or chains. The syntax is: 
 
mobilizeInterfaces <interface depth>  

<chain 1> [<chain 2> [<chain 3> […etc]]]   
 
The <interface depth> is measured as the minimum distance between atoms on 
different chains across an interface. If the minimum distance between the chains is greater 
than this, no constraint will be applied. The constraint will be applied to the first pair of 
atoms found, which spans the two chains and whose internuclear distance is smaller than 
<interface depth>. Note that this counts over all atoms, not just the Cα or C3*. We 
are now using OpenMM’s neighborlisting for this, which is pretty economical even if you 
aren’t set up to use the GPU. <chain 1,2, etc>  is the list of chains forming a 
complex, whose interfaces with the rest of the system you are interested in.  For example, say 
you have a complex of chains A, B, and E.  If you issue: 
  
constrainInterfaces 0.6 A B 
 
Then chains A and B will each separately be constrained to chain E, unless one of the two 
former chains is more than 0.6 nm from E, in which case that chain will not be constrained to 
E. Note that this will not apply a constraint between A and B! In this case you could just as 
easily have issued: 
 
constrainInterfaces 0.6 E 
 
If you like to be explicit (a good habit, by the way), you can use the alternate syntax: 
 
mobilizeInterfaces <interface depth>  

<chain 1> [<chain 2> [<chain 3> […etc]]]   
Versus 
<chain I> [<chain II> [<chain III> 

[…etc]]]   
 

 
This creates all possible pairwise constraints between <chain 1,2,..etc> and <chain 
I, II..etc> ,  skipping pairs of chains with minimum separation greater than 
<interface depth>. You would get the same result as before if you issue: 
 
constrainInterfaces 0.6 Default A B Versus E 
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5.12  Coupling protein backbone ψ and φ angles  
 
If you are modeling homomultimers or for some other reason wish to impose symmetric 
motion of protein backbones, you can use the following command: 
 
couplePsiPhiAngles <Chain A> <start residue A> <end residue A> 
<Chain B> <start residue B> <end residue B> 
 
This forces corresponding residues in chains A and B, over the specified range, to have the 
same ψ and φ angles. You need to make sure that the ranges <start residue A> 
<end residue A> and <start residue B> <end residue B> have the same 
number of residues. However strictly speaking you could get away with these stretches not 
having the same sequence, since the coupled-coordinate constraints apply only to the 
backbone angles.  
 
 
 
 
 
 
 
 
 
 
 
 
 

6 Direct structure editing  
 
In this chapter we talk about editing structure directly, meaning modifying internal or 
Cartesian coordinates of structures, adding or removing atoms, etc. For now this chapter is 
quite short, other features will be documented soon. 
 
 
6.1 Initial displacement  
 
This command simply displaces the designated chain by a given Cartesian vector, with 
respect to its position in the input structure file: 
 
initialDisplacement <chain> <X> <Y> <Z> 
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6.2 Imposing protein secondary structure 
 
Have you ever simply wanted to impose a certain secondary structure in a certain region of 
your model?  Say, make a helix-turn-helix into a single continuous helix?  Well, with the new 
setPhiPsiAngles command you can do just that. It sets the phi, psi, and peptide 
dihedral angles to the defaults for Alpha, ParallelBeta and AntiParallelBeta 
secondary structures, overriding whatever values these dihedrals may have taken from the 
input structure file.  The syntax is: 
 
setPhiPsiAngles <chain ID> <start residue> <end residue> < 
Alpha | ParallelBeta | AntiParallelBeta> 
 
These are applied after structure matching. If the command is issued multiple times, the 
dihedral angles are set  in the order the commands were issued. 
 
6.3 Introducing a substitution mutation  
 
A common structure editing operation is to substitute one residue type for another. The 
syntax is: 
substituteResidue <chain> <residue ID> <new residue type>  
The residue at position <residue ID> will simply be replaced by one of type <new 
residue type>. If you provided an input structure file, MMB will match all the internal 
coordinates it can based on identical atom names, and use default values for the remaining 
internal coordinates.  For example if your mutate alanine to valine, it will match the Cα and 
Cβ positions, but will choose a position for  Cγ1 and Cγ2 based on default bond lengths, 
angles, and dihedrals.  Note that substitutions in general will need to be equilibrated to ensure 
reasonable interatomic contacts.   
 
6.4 Introducing an insertion mutation  
 
Another common structure editing operation is to insert a residue. The MMB syntax for this 
is: 
insertResidue <chain> <residue ID> <inserted residue type>  
MMB will simply insert a residue at position <residue ID>. It will figure out the position 
respecting the PDB convention of residue numbers being ordered first by residue number, 
then by insertion code.  You can insert in the middle of the chain, or at either terminus.   
 
 
6.5 Making a deletion mutation  
 
It’s even simpler to delete a residue. The MMB syntax for this is: 
deleteResidue <chain> <residue ID>  
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MMB will simply delete the residue at position <residue ID>. You can also delete an 
entire range, like this: 
deleteResidue <chain> <start residue ID> <end residue ID> 
.. and MMB delete all residues in the specified range.  Lastly, you can delete an entire chain, 
like this:  
deleteResidue <chain>  
 
6.6 Renumbering residues 
  
The PDB has been referred to as a bioinformatician’s nightmare. There are several reasons 
for this, one of which is that structural biologists can be rather liberal in their interpretation of 
the residue numbering rules, in particular what insertion codes mean and in what order they 
should go. There is also the problem of gaps. Some software packages, such as FoldX, don’t 
handle insertion codes very well. So there are many reasons why you may wish to change the 
numbers so they start at some integer value and increase consecutively from there. To do 
this, simply issue: 
 
renumberBiopolymerResidues  
 
MMB will simply renumber all biopolymer chains to start at 1. Note that any commands 
issued in the same stage, that access residue numbers, implicitly or explicitly, will cause 
MMB to crash. Sorry. So if you need to renumber, do it in a stage that involves nothing else. 
You can do any modeling you wish before and after that stage. Here is an example of me 
renumbering 1A22.pdb:  
  
firstStage 2 
lastStage  3 
readAtStage 2 
    loadSequencesFromPdb 1A22.pdb 
    renumberBiopolymerResidues 
    reportingInterval .0000000001 
    numReportingIntervals 1 
readBlockEnd 
readAtStage 3 
    # last.2.pdb will have renumbered residues, which will now 
be read by: 
    loadSequencesFromPdb 
    # You can issue any commands you want here. Just use the 
new residue numbers. 
readBlockEnd  
 
 
An alternative syntax involves calling loadSequencesFromPdbAndRenumber. This is 
just like loadSequencesFromPdb, but it renumbers right after the coordinate matching 
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step. Unfortunately it is also pretty much incompatible with any residue-specific operations. 
Example usage is only slightly different:  
  
firstStage 2 
lastStage  3 
readAtStage 2 
    loadSequencesFromPdbAndRenumber 1A22.pdb 
    reportingInterval .0000000001 
    numReportingIntervals 1 
readBlockEnd 
readAtStage 3 
    # last.2.pdb will have renumbered residues, which will now 
be read by: 
    loadSequencesFromPdb 
    # You can issue any commands you want here. Just use the 
new residue numbers. 
readBlockEnd  
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7 Spiral genome tracing 
 
In this chapter we describe spiralDNA , its subcommand and parameters. These allow you 
to trace a spherical- or cylindrical-spiral genome. This is useful when your genome follows a 
spiral geometry, for example in the case of icosahedral viruses. It plays perfectly with the 
density map energy evaluation, so you can quicly and easily optimize parameters over the 
entire genome, which in turn allows you much greater accuracy than you would ever get with 
manual fitting. Part of this is done using coarse graining, with one atom representing each 
base pair. You will probably evaluate the fitting quality at this stage, and may not even feel 
the need for fine graining. Atomistic (fine grained) models can, however,  be constructed. 
The one current command is “writeCommands” and there are several parameters: 
 

• chainID 

• center 

• radius 

• geometry 

• cylinderHeight  

• pitch 

• helixAdvancePerBasePair 

• interStrandDistance 

• spiralIsRightHanded 

• startTheta 

• endTheta 

• phiOffset 

• frequencyPhaseAmplitude 

• spiralPdbFileName 

• spiralCommandsFileName 

 
7.1 chainID  
 
The chainID keyword sets the chain ID for the coarse grain atoms (each of which 
represents one base pair). The syntax is simply: 
 
spiralDNA chainID <chain ID>  
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The specified chain ID is then linked to all current and subsequent spiralDNA parameters 
(latest taking precedence), until a subsequent chainID is invoked. So you can create 
multiple coarse-grained DNA spirals, each with different chain IDs, just by invoking the 
above for each desired chain.  
 
 
7.2 center  
 
The center keyword sets the center point for the spiral. The syntax is: 
 
spiralDNA center <X> <Y> <Z>  
 
With X,Y,Z in nm.  
 
 
7.3 radius 
 
The radius keyword sets the radius for the spiral, in nm. This is measured from the center 
of the spiral to the nuclear position of the coarse-graining atom. The latter would be placed 
on the helical axis of the eventual atomistic DNA. Syntax: 
 
spiralDNA radius <radius>  
 
 
7.4 geometry 
 
The geometry keyword tells MMB what sort of spiral you want.  For now the two 
supported geometries are sphere and cylinder. The syntax is: 
 
spiralDNA geometry <sphere | cylinder> 
 
 
 
7.5 cylinderHeight  
 
The cylinderHeight keyword sets the height, in nm. This parameter of course only 
applies in the case of spiralDNA geometry cylinder. The syntax is: 
 
spiralDNA cylinderHeight <height>  
 
7.6 pitch 
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The pitch keyword sets the distance (in nm) along a line of constant φ, between 
consecutive windings. For  spiralDNA geometry cylinder , this is a linear distance 
along Z. For spiralDNA geometry sphere , this is an arc length on a circle that 
includes the poles. Syntax: 
 
spiralDNA pitch <nm>  
 
7.7 helixAdvancePerBasePair  
 
This sets the distance (in nm) between consecutive base pairs, along the DNA axis. For  
spiralDNA geometry cylinder , this is a linear distance along Z. For spiralDNA 
geometry sphere , this is an arc length on a circle that includes the poles. Syntax: 
 
spiralDNA helixAdvancePerBasePair <distance>  

 
Typically you would set this to 0.34nm.  
 
7.8 spiralIsRightHanded  
 
If set to 1 (True) then the windings go like a standard screw thread about the polar axis. 
Otherwise the windings are left handed. Syntax: 
 
spiralDNA spiralIsRightHanded < 0 | 1 > 
 
Default is 0 (False), or left handed. 
 
7.9 startTheta, endTheta 
 
These two parameters specify where the spiral starts and ends, in theta. Recall that theta = 0 
at the north pole, π at the south pole (units being rads). Syntax: 
 
spiralDNA [startTheta | endTheta] < angle > 
 
It is required that startTheta < endTheta. 
 
7.10 phiOffset 
 
This specifies an offset to be added to the spiral, about the polar axis. Recall that φ is the 
angle about the polar axis, ranging from 0 to 2π (units, as always, being rads). Syntax: 
 
spiralDNA phiOffset < angle > 
 
7.11 frequencyPhaseAmplitude 
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It could be that your DNA does not follow a strict spiral. This command adds modulations in 
the θ as a function of φ. You can invoke them as many times as you wish, and they are 
additive, so under the Fourier theorem you can generate any perturbation you choose.  
Syntax: 
 
spiralDNA frequencyPhaseAmplitude <frequency multiplier> 
<phase> <amplitude> 
 
Where: 
 The perturbation goes through  frequency multiplier oscillations for 0 < φ ≤ 2π. 

phase and amplitude are both in rads and do what you would expect. This works best for 

reasonably small amplitude.  

 
 
 
 
7.12  spiralPdbFileName  
 
This specifies the name of the file to which the coarse-grained spiral will be written, in .pdb 
format. Each base pair is represented by a single MG2+ ion. by defaultIt T.  Syntax: 
 
spiralDNA spiralPdbFileName <file name> <phase> <amplitude> 
 
Please do not use any spaces in the file name. Not only will it not work, it violates my 
religion.  
  
 
7.13  writeCommands, spiralCommandsFileName  
 
writeCommands is the only one in this chapter which is not a parameter but a command. 
It writes an MMB command file, with name specified by spiralCommandsFileName. 
the name of the file to which the coarse-grained spiral will be written, in .pdb format. Each 
base pair is represented by a single MG2+ ion. by defaultIt T.  Syntax: 
 
spiralDNA spiralCommandsFileName <file name>  
 
Again, please do not use any spaces in the file name. Please specify this first, then:  
 
spiralDNA writeCommands 
 
Note writeCommands takes no additional parameters.  
  



   Building arbitrary molecules (beta)
    

 

43 

 
 
 
 
 
 
 
 
 
 
 

8 Building arbitrary 
molecules (beta) 

 
In this chapter we talk about building arbitrary molecules.  Here MMB will turn user 
commands into molmodel commands. This feature is very much in beta, so you will need 
help if you are going to do anything complicated. There exist both known and (almost 
certainly) unknown bugs.  Contact me if you are using this! 
 
 
8.1 Example: benzene 
 
This is the approach which is most general, building up the molecule one atom at a time: 
 
# chain ID and arbitrary 3-character residue name: 
molecule initialize B RNG 
# create a trivalent atom, of element Carbon, name it C1: 
molecule B setBaseAtom   TrivalentAtom C1 Carbon 
# The TrivalentAtom has bonds named bond1, bond2, and bond3.  
Attach the next atom to one of these three (here we chose 
bond2) and specify the bond length (.14 nm): 
molecule B bondAtom TrivalentAtom C2 Carbon C1/bond2 .14 
# note that in the above, bond2 of C1 is now occupied.  It's 
also implicit that bond1 of C2 is occupied, because that's by 
default the bond on the child which is used for attachment. 
# now all the other four carbons in the ring: 
molecule B bondAtom TrivalentAtom C3 Carbon C2/bond2 .14 
molecule B bondAtom TrivalentAtom C4 Carbon C3/bond2 .14 
molecule B bondAtom TrivalentAtom C5 Carbon C4/bond2 .14 
molecule B bondAtom TrivalentAtom C6 Carbon C5/bond2 .14 
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# Use the special atom type AliphaticHydrogen here, and use 
another available bond.   
molecule B bondAtom AliphaticHydrogen H1 Hydrogen C1/bond3 .1 
molecule B bondAtom AliphaticHydrogen H2 Hydrogen C2/bond3 .1 
molecule B bondAtom AliphaticHydrogen H3 Hydrogen C3/bond3 .1 
molecule B bondAtom AliphaticHydrogen H4 Hydrogen C4/bond3 .1 
molecule B bondAtom AliphaticHydrogen H5 Hydrogen C5/bond3 .1 
molecule B bondAtom AliphaticHydrogen H6 Hydrogen C6/bond3 .1 
# Now for atoms C2,C3,C4,and C5, we have now occupied bond1 
(to attach to the preceding atom), bond3 (to attach a 
hydrogen), and bond2 (to attach the succeeding atom). So no 
bonds left on those atoms. 
# C1 has bond1 still available (because it has no parent 
atom).  C6 has C2 available, because it has no child atom. 
 
#Find convenient biotypes in your tinker parameter file for 
these atoms.  In this case we used Phenylalanine CZ, with 
Ordinality:Any for the carbons, and Phenylalanine HZ for the 
aliphatic hydrogens: 
molecule B setBiotypeIndex C1 Phenylalanine CZ Any 
molecule B setBiotypeIndex C2 Phenylalanine CZ Any 
molecule B setBiotypeIndex C3 Phenylalanine CZ Any 
molecule B setBiotypeIndex C4 Phenylalanine CZ Any 
molecule B setBiotypeIndex C5 Phenylalanine CZ Any 
molecule B setBiotypeIndex C6 Phenylalanine CZ Any 
 
molecule B setBiotypeIndex H1 Phenylalanine HZ Any 
molecule B setBiotypeIndex H2 Phenylalanine HZ Any 
molecule B setBiotypeIndex H3 Phenylalanine HZ Any 
molecule B setBiotypeIndex H4 Phenylalanine HZ Any 
molecule B setBiotypeIndex H5 Phenylalanine HZ Any 
molecule B setBiotypeIndex H6 Phenylalanine HZ Any 
 
# Now we add a bond to close the ring.  Recall the bond 
centers that are available on C1 and C6: 
addRingClosingBond B C1 bond1 C6 bond2 
 
8.2 Example: ethane 
 
Here is an example of how to build ethane: 
 
molecule initialize B MTN 
molecule B setBaseCompound MethylGroup 
molecule B convertInboardBondCenterToOutboard 
#molecule B bondAtom AliphaticHydrogen H4 Hydrogen methyl/bond 
0.1112 
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molecule B bondCompound methyl2 MethylGroup MethylGroup/bond 
molecule B setBiotypeIndex C MethaneC 
molecule B setBiotypeIndex H1 MethaneH 
molecule B setBiotypeIndex H2 MethaneH 
molecule B setBiotypeIndex H3 MethaneH 
molecule B setBiotypeIndex methyl2/C MethaneC 
molecule B setBiotypeIndex methyl2/H1 MethaneH 
molecule B setBiotypeIndex methyl2/H2 MethaneH 
molecule B setBiotypeIndex methyl2/H3 MethaneH 
#molecule B setBiotypeIndex H4 MethaneH 
molecule B defineAndSetChargedAtomType MethaneC 1 -0.18 
molecule B defineAndSetChargedAtomType MethaneH 34 0.06 
 
 
 
 
8.3 Example: GDP 
 
Here is an example of how to build GDP: 
 
molecule initialize H   G    
molecule H setBaseCompound  Guanylate    
# Add alpha phosphate : 
molecule H bondAtom QuadrivalentAtom PA Phosphorus O5*/bond1 
.14  
molecule H setBiotypeIndex PA Phosphate,?RNA P Initial 
molecule H bondAtom UnivalentAtom  OPA1 Oxygen PA/bond3 
0.14800 
molecule H bondAtom UnivalentAtom  OPA2 Oxygen PA/bond4 
0.14800 
molecule H setBiotypeIndex OPA1 Phosphate,?RNA OP Initial 
molecule H setBiotypeIndex OPA2 Phosphate,?RNA OP Initial 
molecule H bondAtom  BivalentAtom OPA3 Oxygen PA/bond2 .140  
2.094 
molecule H setBiotypeIndex OPA3 Phosphate,?RNA O5* Initial 
molecule H bondAtom QuadrivalentAtom P Phosphorus OPA3/bond2  
.14  
molecule H bondAtom UnivalentAtom  OP1 Oxygen P/bond3 0.14800 
molecule H bondAtom UnivalentAtom  OP2 Oxygen P/bond4 0.14800 
molecule H bondAtom UnivalentAtom  OP3 Oxygen P/bond2 0.14800 
molecule H setBiotypeIndex P Phosphate,?RNA P Initial 
molecule H setBiotypeIndex OP1 Phosphate,?RNA OP Initial 
molecule H setBiotypeIndex OP2 Phosphate,?RNA OP Initial 
molecule H setBiotypeIndex OP3 Phosphate,?RNA OP Initial 
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8.4 Example: water 
 
I apologize in advance about how hard it is to make a simple water molecule!  
 
molecule initialize H H2O 
molecule H setBaseAtom BivalentAtom OW1 Oxygen 
molecule H bondAtom UnivalentAtom HW1 Hydrogen OW1/bond1 .14 
molecule H bondAtom UnivalentAtom HW2 Hydrogen OW1/bond2 .14 0 
Free   
molecule H defineBiotype O 2 TIP3P Oxygen 
molecule H defineBiotype H 1 TIP3P Hydrogen 
molecule H setBiotypeIndex OW1  TIP3P Oxygen  Any 
molecule H setBiotypeIndex HW1  TIP3P Hydrogen  Any 
molecule H setBiotypeIndex HW2  TIP3P Hydrogen  Any 
molecule H defineAndSetChargedAtomType  TIP3P Oxygen Any 21  -
0.834 
molecule H defineAndSetChargedAtomType  TIP3P Hydrogen Any 30 
0.417 
molecule H setDefaultBondAngle 104.52 HW1 OW1 HW2 
 
 
 
 
 
 

9 Global parameters 
 
This appendix, describes global parameters available to users.  It does not cover commands 
such as baseInteraction, aromatic, contact, mobilizer, and 
constraint. The simplest difference between a parameter and a command is the 
following. A command can be issued an unbounded number of times, subject only to memory 
and computer time limitations.  The major caveat is that in the case of constraint 
commands, one must not overconstrain the system.  In contrast a parameter can only be set 
once (at least for a given stage); if a parameter is set multiple times for a given stage, only the 
last value of that parameter will be used. A listing of all user-configurable global parameters 
and their current values is printed at the beginning of every stage of an MMB run.  Some 
additional parameters are available but rarely used or not recommended; contact the author 
with questions on these.  
 
This chapter does not describe staged parameters.  These are parameters for which not only 
the value, but also the stage at which they first take effect is specified, for example 
temperature and dutyCycle.  
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addAllAtomSterics Bool FALSE Add steric contact spheres to all atoms.  This is more 

expensive and more prone to kinetic trapping than 
addSelectedAtoms. 

addAllHeavyAtomSterics                     
  

Bool FALSE Add steric contact spheres to all atoms EXCEPT 
hydrogens.   

checkSatisfied                        
  

Bool FALSE At each reporting interval, list all the baseInteraction’s and 
determine which were satisfied.   

constraintTolerance                   
  

float 0.05 This determines the tolerance of the Weld constraint.  If 
Weld’ed pieces are moving relative to each other, reduce 
this number. 

cutoffRadius                            float 0.1 This is the range of the MMB potential.  See our Multiple-
template homology modeling paper. 

densityFileName String  Name of file for fitting based on electron density, in .xplor 
format.  If you need to convert from some other format, we 
recommend using mapman (e.g. rave_osx for mac).  
Instructions are here: 
http://xray.bmc.uu.se/usf/mapman_man.html#S10 

densityForceConstant Float 1 Scale factor for the density based forces 
firstStage                              int 1 Stage at which simulation should begin.   
globalAmberImproperTorsionS
caleFactor   

float 0  
 
 
These eight parameters set scaling factors for terms in the 
Amber99 potential.  Most default to 0 for economy. 

globalBondBendScaleFactor               float 1.0 
globalBondStretchScaleFactor
   

float   1.0 

globalBondTorsionScaleFactor
   

float 0 

globalCoulombScaleFactor
   

float 0 

globalGbsaScaleFactor 
   

float 0 

globalVdwScaleFactor 
   

float 0 

initialSeparation float 20.0 Sets the separation between chains at stage 1, or 
whenever readPreviousFrameFile = false. 

integratorAccuracy                    
  

int 0.001 Integrator tolerance, applies for variable step size time 
integrators. 

integratorStepSize                    
  

int 0.001 Step size in ps, for fixed step size integrators. 

integratorType     
  

string Verlet Choose between Verlet, RungeKuttaMerson 

integratorUseFixedStepSize              Bool FALSE self explanatory 
lastStage   
  

int 1 Stage at which simulation will end 

leontisWesthofInFileName                string ./paramet
ers.csv 

MMB parameter file 

loadTinkerParameterFile                 Bool FALSE If FALSE, uses hard-wired Tinker parameters.  If 1, reads 
parameters from tinkerParameterFileName 

numReportingIntervals  
alias maxReportingIntervals

int 100 Number of reporting intervals per stage. 
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nastGlobalBondTorsionScaleF
actor  

int 10 Scale factor for NAST torsional potential 

physicsRadius Float 0 If this is set to a value > 0, all residues within 
physicsRadius of any “flexible” atoms will be added to the 
physics zone. “flexible” atoms are defined as those 
belonging to a mobilized body of mass < 40. 

randomizeInitialVelocities Bool FALSE Adds a random velocity to each body at the beginning of 
the simulation stage.  Note that if you are have any non-
interacting bodies (e.g. free ions with charges turned off) 
you may wish to apply initial velocities, otherwise the 
Nose-Hoover thermostat will leave them in their zero 
kinetic energy state.    

reportingInterval  
  

float 1.0 Duration of reporting intervals, in ps. 

removeRigidBodyMomentum Bool FALSE When True, periodically sets overall translational and 
rotational momentum to zero. 

rigidifyFormedHelices 
   

Bool FALSE  

scrubberPeriod  
   

float 4 Duration of one cycle of potential rescaling (ON time + 
OFF time) in ps. 

safeParameters                          Bool TRUE When TRUE, checks for syntax errors as well as some 
potentially dangerous parameter values. 

setForceAndStericScrubber
   

Bool FALSE No longer user configurable.  When dutyCycle < 1.0, this is 
automatically set to TRUE.  It turns ALL forces (including 
baseInteraction’s, sterics, Amber99 force field, 
springToGround’s, etc.) off for (dutyCycle -1) fraction of 
each scrubberPeriod.   

setHelicalStacking  
  

Bool TRUE if TRUE, identifies three consecutive 
WatsonCrick/WatsonCrick/Cis base pairs as a helix and 
applies HelicalStackingA3/HelicalStackingA5/Cis 
baseInteraction’s between the consecutive residues on 
each strand. 

setTemperature  
   

Bool TRUE Turns on thermostat. 

thermostatType                          string  Choices are NoseHoover and VelocityRescaling 
tinkerParameterFileName                 string  Name of the tinker-formatted parameter file.  Only needed 

if the tinker force field is turned on. 
baseInteractionForceMultiplier 
alias 
twoTransformForceMultiplier  
alias forceMultiplier            

float 100 Scale factor applied to all baseInteraction and aromatic 
forces.  100 or 1000 is recommended to speed up 
modeling. 

useCIFFiles Bool TRUE Use CIF, which is the standard that replaces pdb. 
useFixedStepSize                        Bool FALSE Specifies fixed-step-size time integration. 
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10 Macros 
 
This appendix describes macros available to users.  These macros set parameters on the 
user’s behalf.  These are provided in cases where the corresponding commands might be 
confusing to the user, or simply not under user control. 
 
 
matchFast This sets matchExact TRUE, matchIdealized FALSE, 

matchOptimize FALSE, and guessCoordinates FALSE.  It 
is very economical. It is the default behavior, so usually 
there is no need to call this. 

setDefaultMDParameters Equivalent to issuing: 
globalBondTorsionScaleFactor    1.0  
globalAmberImproperTorsionScaleFactor  1.0 
globalBondBendScaleFactor       1.0  
globalBondStretchScaleFactor    1.0  
globalBondTorsionScaleFactor    1.0  
globalCoulombScaleFactor        1.0  
globalVdwScaleFactor            1.0  
globalAmberImproperTorsionScaleFactor  1.0 
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11 User defined variables, 
parameter arithmetic, and 
conditional blocks  

 
In this Appendix, we describe how to define numerical variables, and various ways to specify 
sections of the input file which are to be read or ignored at certain stages.  
 
11.1 Comment marker  
 
The comment marker is  #, e.g.: 
 
# Don’t read this, it’s just a comment 
 
11.2 User defined variables 
 
User variables are defined with the following syntax: 
 
@<variable-name> <float or integer value> 
 
The variable @<variable-name> can then be used wherever a literal integer or float is 
expected.  If a float is assigned to the variable, and the variable is later used where an integer 
is expected, MMB will return an error. The definition of the variable should precede its first 
use in the input file.  For example: 
 
#declare @myStage variable and set to 3  
@myIntervals 3 
# now use it where a number (in this case an integer) is 
expected: 
numReportingIntervals @myIntervals 
 
Don’t use any punctuation or whitespace in <variable-name>.  
Don’t try to set firstStage or lastStage  with a user variable. 
 
11.3 Parameter arithmetic  
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User variables are pretty handy, and start to make the command file more like a 
programming language. In the same vein, MMB allows the ‘+’ and ‘-’ operators. This means 
that any integer or floating-point (double-precision) parameter value can be set using a 
combination of literals, user variables, and the above operators. There is no limit to the 
number of operators and operands.  Here are a couple of examples: 
 
@DUMMY 40 
numReportingIntervals  @DUMMY+10-@DUMMY 
@MYFLOAT 0.35 
reportingInterval  4+@MYFLOAT-0 
 
This is equivalent, of course, to:  
 
numReportingIntervals  10 
reportingInterval  4.35  
 
Don’t use any whitespace or additional punctuation (such as parentheses, commas, etc.) in an 
arithmetic expression. Note also that residue ID’s are special (they’re not integers), and their 
‘+’ operator follows different rules (see Chapter 2). 
 
For non-residue number parameters, you have MUCH more power, there you can use any 
mathematical operation enabled by the Lepton (Lightweight Expression Parser, 
simtk.org/projects/lepton) library. Download Lepton to see its user manual with full list of 
available functions.   
 
11.4 Conditional blocks  
In many cases we will want to issue different commands and make different choices of 
parameter values at different stages of a job.  For this purpose we can enclose a block of the 
input file in a conditional block, which is opened as follows: 
 
 
readFromStage <stage-number>  Read only if the current stage is equal to 
or GREATER than <stage-number>. 
readToStage                  Read only if the current 
stage is equal to or LESS than <stage-number>. 
readAtStage     Read only if the current stage is EQUAL 
to  <stage-number>. 
readExceptAtStage    Read only if the current stage is NOT 
EQUAL to <stage-number>. 
 
The commands and parameters to be conditionally read follow, and the end of the block is 
indicated with a readBlockEnd statement, e.g.: 
 
# start conditional block: 
readAtStage 3 
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# read the following lines only at stage 3: 
sequence C CCUAAGGCAAACGCUAUGG 
firstResidueNumber C 146 
baseInteraction A 2658 WatsonCrick A 2663 WatsonCrick Cis  
contact C 146 SelectedAtoms C 164        
# end conditional block: 
readBlockEnd 
# continue with the rest of the input file 
 
 


