m  MMB 3.0

UNIVERSITET

Reference guide

oktober 30, 2019







Copyright and Permission Notice

Copyright (c) 2011 Samuel Flores
Contributors: Joy P. Ku

Permission is hereby granted, free of charge, to any person obtaining a copy of this document (the "Document"), to use and
copy the Document without modification for academic teaching and research purposes, subject to the following conditions:

This copyright and permission notice shall be included in all copies or substantial portions of the Document.

THE DOCUMENT IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS, CONTRIBUTORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
DOCUMENT OR THE USE OR OTHER DEALINGS IN THE DOCUMENT.






il






Table of Contents

1T WHAT S NEW? ciiiitiieennnnnccceceteesssnssssssscsesssssssssssssssssssssssssssssssssssssssnsssssssssssssssansssssss 7
2 BIOPOLYMERS AND MONOATOMS .....cceeeeeeeeereeennensscecesssssssssssssssccsssssssssssssssssses 9
2.1 Biopolymer sequences and first reSidue MUMDETS............c.veeeiriiieeriiiireeeiieeeeieeeeeiree e eieeeeereee e 9

2.2 Clarifying arithmetic operations on reSidue MUMDEIS ...........ccervrreeriiireeriiieeeriieeeereeeeeireeeseneeeeens 12

B 1 10) 110 Y2 (0] 1 PSSP P PP PPPTRNN 12

B 1 1S3 e 1o} o) £ S SRR 13

A WORD ABOUT UNITS .cciiitiireennnncceeceeeseessnsssssscccssssssssssssssssssssssssssssssssssssssssnsssssss 14

4 FORCES ... ttittrrennnceeeeeernreennsssssccessssssnsssssssssssssssssssssssssssssssssssssssssssssssssnsssssssssssssssane 14
N I o R0Y 013 1o 1o 1 SRR 14

4.2 NUCICICACIADUPIEK ... .eeeeiiiiieeeiiiie ettt ettt e e ettt e e ettt e e et eeestaeeesestaeeesansaeeeenseeeeennseeesnnnneeeans 16

L ¥ 1 USSR 17
110700 N 01 3 1 1SS 17

T 110700 U 11T USSR 17

O R o) 13V 0T 5 (01 T SRR 18

A 1§ Fea sV 1S3 4 LA o) oL SRR 18

I ¢T0) 1L o] AP PTPUPPPTRNN 20

4.9 ResStraining to GrOUNG .........eeeeeiiviieeeiiieeeiiee e et ee e et tee et teeserteesssaeeessssaeeessnseeessnseeesannseeesannneeenns 21

4.10 Density based fOrce fIEld .........cuviiiiriiiieeiiiie et 21

4.11 Electrostatic Density force-field............ooriuiiiiiiiiieieiiie et enaee e 24

4.12 PhysiCs WNETE YOU WANL TL.....cccuviieeeiiieeeiiieeeiieeeeeieteeeeeeeeserteeeeeaeeesessaeeessnsaeeesnseeessnseeesnnnneeeens 25

4.13 Potential rescaling with the “SCrubber’...........cc.oviiriiiieieiie e 26

4.14 addRinGClOSINGBONG. ........viiiiiiiiie ettt e et e e et e e st eeenseeeeenneeesnnnaeeeens 26

5 MOBILIZERS AND CONSTRAINTS ....couurriieeeeereeeennesssccccsssssasssssssssssssssssnssssssssssss 27
T 1T 11§75 SRS 28

5.2 apPplyMODIlZEISWIthiN ......ccooiuiiiiiiiie ettt e e et e e s e e e s snraeeeenneeeeennne 28

5.3 MODIHZEINIEITACES .. .eeeeeiiiiie ettt ettt e ettt e e et e e st ee e e ntreeesensaeeesnnsaeaeenseeeeannns 29

5.4 SINGIEBONAMODIIILY ....ccciiiieiiiiiie ittt ettt e ettt e e et e e st e e e eneaeeesensaeeeennnaeeeenneeeennnns 29

T T 01531 ad 1LY [o] o3 1 1 /USRS 30

5.6 Default MODILIZETS .....cccoiiiieieiiiee ettt e et e e st e e st e e e et e e s entaeeeennnaeeeenreeeennnns 30

5.7 Order of application 0f MODIIIZETS.........cuevieriiiie ettt e e eeee e e e ereee e 32

5.8 COMSITAINE ..eeeeuiiiieeiiiiieeeiiieeeeitee e ettt e e ettt e e eataeeeesteeeesneseeeeensseeesassaeeesnseeessnsseeesansseessnnseeesensseeesannns 33

5.9 Constraining to GrOUNA .........cceieeiriiieeeiiieeeeiiteeeriteeeeetteeeeetateessneeeessnseeesssseeesansseessnsnaeesensseeesannns 34

5.10 Constraining rigid segments to each other or to ground ..............cccovvveviciieiriiiie e 34

5.11 CONSIIAININEEITACES. .. .eeeiiiiieeeiiiee ettt ettt e et e e ettt e e ettt e e st eesnseeeesstaeeesensseessnnseeaeensseeenannns 35

5.12 Coupling protein backbone y and @ angles...........cceeeeveiiieeiiiiieieciiee et 36

6 DIRECT STRUCTURE EDITING ....ccitttttucececceereenennessececesssssassssssssscsssssssssssssssssass 37
6.1 Initial diSPlACCIMENL .....ccuviiieeeiiiieeiiieeeeieee ettt e ettt e e ettt e e et e e s teeeesnseeeesntseeessnsseessnnseeaeesseeenannns 37

6.2 Imposing protein SECONAArY SHIUCTUIE .........ccccuuirerriiieeeiieeeeitieeeeieeeeeereeeeeeaeeessnreeessnseeeeenneeeeannns 37

6.3 Introducing a SUDSHTUtION MULATION ......c.vvireeriiireeriiieeeeiieeeeiteee et eesereeeeeireeessnaeeesnnseeeesnneeeeannns 37

6.4 Introducing an iNSEIrtioN MULATION. .........c.uereeriiireeriieeeeeiteeeeeiieeeeeieeeesereeeesereeesennreessnnseeaesnsneeenannns 38

6.5 Making a deletion MULALION ........ccccuiieeeiiiieeeiiieeeriiee et ee e et e e et e e st e e e sereeessnnaeeesnnnaeesesneeesannns 38

6.6 RenUMDEIING FESIAUES ......ooeieiiiieiiiie ettt e eeee ettt e e ettt e e st e e st e e e staeeessnnaeeesnnnaeeeesseeenannns 38

7 BUILDING ARBITRARY MOLECULES (BETA)....cccecinnneticcssneenccssneencsssnnecscssanne 40



vi

7.1 EXAMPIE: DENZEIEC .....vviieeiiiiieeeiiiee ettt ettt e ettt e e ettt e e st eestseeeeennaeeesnsaeeeensseeeennnaeeeans 40
7.2 EXaMPIE: CTNANEC......cueiiieiiiiieeeiiee ettt e e e et e e et e e e ana e e e enraeeennnaeeeens 41
A T 251111 o) (€ 1 D ) SRS URR 42
A 2 111 o) (e 1< SRR 42
8 GLOBAL PARAMETERS ... ciiitittetenncccceceereesnnssssssccesssssssssssssssssssssssssssssssssssssssans 43
O IMACROS ..ccietiteeenneeceeeeeeeeessnsssssseseesssssssssssssssssssssssssssssssssssssssnssssssssssssssssnssssssssssssssnnns 46
10 USER DEFINED VARIABLES, PARAMETER ARITHMETIC, AND
CONDITIONAL BLOCKS ...cuueiiiieeetnnennnnccsccccessssssssssssssscssssssssssssssssssssssssasssssssssssss 47
10.1 COMMENE MATKET......ceuviiieiiiiieeeiiieeeeitte e ettt e e eiteeeestaeeesssneeeestaeeeesasseeesssseeesassaeessnsseeesnnsseessnseees 47
10.2 User defined VAriables ........c..eieieiiiieieiiiieeiiie e eiitee et ettt e e et e e e stree e st eeesereeessnsseeesnnsaeeesnnneeas 47
10.3 Parameter arithiMEtiC........eeeiuviieeeiiiieeeiiieeeiiee ettt et e e et e e et e e e et ee e st eeesnseeessnsseeesnnsaeeesnneeas 47

10.4 Conditional blocks



1 What’s new?

Release 2.18 introduces Nucleotide Conformers — NtC’s, which were implemented in MMB
by Emanuel Peter, Jiti Cerny, and Bohdan Schneider. From 2.19 we now support triclinic
density maps, that is to say unit cell axes need no longer be orthogonal. We also the add
Planck’s-Law noise generator.

For any published work which uses MMB, please cite one or more of the following:

Dourado, D. & Flores, S. C. (2014). A multiscale approach to predicting affinity changes in
protein-protein interfaces. Proteins. doi:10.1002/prot.24634

Turning limited experimental information intio 3D models of RNA, by Samuel C Flores and
Russ B Altman, RNA 16(9):1769-78 (2010).

Predicting RNA structure by multiple template homology modeling, by Samuel C. Flores,
Yaqi Wan, Rick Russell, and Russ B. Altman (2010) Proceedings of the Pacific Symposium
on Biocomputing.

Fast flexible modeling of RNA structure using internal coordinates, by Samuel C. Flores,
Michael Sherman, Chris Bruns, Peter Eastman, Russ Altman (2011) Transactions in
Computational Biology and Bioinformatics 8(5): 1247-57.






2  Biopolymers and monoAtoms

In this Appendix, we describe how to instantiate biopolymers (RNA, protein), as well as
single atoms such as counterions. Note that the number of biopolymers and series of single
atoms is limited by the number of characters available as chain identifiers.

2.1 Biopolymer sequences and first residue numbers
MMB can instantiate RNA chains using the following syntax:

RNA <chain ID> <first residue #> <sequence in single letter
code>

The RNA sequence uses the single letter code (A,U,G,C). Similarly, you can instantiate DNA
chains like this:

DNA <chain ID> <first residue #> <sequence in single letter
code>

The DNA sequence uses the single letter code (A,T,G,C). You can instantiate a protein chain
as:

protein <chain ID> <first residue #> <sequence in single
letter code>

The protein chains use the 20 canonical amino acid alphabet for specifying the sequence.

Note that as of release 2.12, you can make the chain ID as long as you wish. This means that
you are not limited to the 144 printable ASCII characters. In the output PDB file, the
following tag will indicate the long chain ID:

REMARK-SimTK-long-ChainID mySuperLongNameForThisChain

.. where of course “mySuperLongNameForThisChain” will be replaced by whatever
chain ID you specified. This will be followed by the corresponding ATOM records. The
ATOM records will have a blank (“ *) in column 22 (the chain ID column). Finally, after all
the ATOM records for that chain have been printed, there will be another tag, like this:

REMARK-SimTK-long-ChainID
.. followed by nothing. This “turns off” the long chain ID specification. The next chain may

be a normal chain (single-character chain ID in column 22) or there may be another chain
with a long ID bracketed by “REMARK-SimTK-long-ChainID” tags as before.



10  BIOPOLYMERS AND MONOATOMS

There is one more way to instantiate sequences, which works for protein, RNA, and DNA.
You can issue the command:

loadSequencesFromPdb

And MMB will go to your input structure file (last.??.pdb) and look for RNA and protein
chains. It will extract the chain ID’s, residue numbers, insertion codes, and residue types
from there. It will also match the internal coordinates to the Cartesian coordinates it finds
there, as usual. You will then be able to issue commands that involve residues in those
chains, as before. Please note that you CANNOT use this command with long chain IDs, it
just won’t work. If you have long chain IDs, just instantiate the chains explicitly.

In addition to removing the need for you to specify these chains manually, this command
also has the advantage of handling insertion codes and gaps in the numbering. You will be
able to append an insertion code to the right of the residue number in any command, e.g.
constrainToGround A 130B (where B is an insertion code).

The residue numbers and insertion codes do need to be increasing from the top to the bottom
of the input structure file, though. Before using this command, you should clean up the input
structure file, removing anything that is not RNA or protein — including DNA, water, ions, or
other molecules. loadSequencesFromPdb gives you one more advantage: it can read
non-canonical nucleic acid types, following the PDB atom record format
(https://cdn.rcsb.org/wwpdb/docs/documentation/file-format/PDB_format 1992.pdf

). The disadvantage is that it just converts them to the nearest canonical equivalent, according
to the following table:

3-letter 1-letter
code Parsed residue type code
ala alanine a
arg arginine r
asn asparagine n
asp aspartic acid d
Cys cysteine C
disulphide bridged

CyX cysteine X
glu glutamic acid e
gln glutamine q
gly glycine g
his histidine h
ile isoleucine i
leu leucine 1
lys lysine k
met methionine m
phe phenylalanine f



monoAtoms

pro
ser
thr
trp
tyr
val
sol
adp
cli
hoh
adn
gua
cyt
ura
thy
h2u
omc
omg
psu
5mc
7mg
5mu
1ma
2mg
m2g
da

dg

dc

dt

proline
serine
threonine
tryptophan
tyrosine
valine
solvent
adp

cl

hoh
adenosine
guanosine
cytosine
uridine
thymine
uridine
cytosine
guanosine
uridine
cytosine
guanosine
uridine
adenosine
guanosine
guanosine

deoxyadenosine
deoxyguanosine
deoxycytosine

deoxythymidine

—— 0o rocoo00r>TCcCon0CconNnCcCc dCcCOO0O>»P >SS S<KK £+ 0o

Biopolymers and 11

Whether you use loadSequencesFromPdb or specify the sequences manually, it is
possible to use the +/- operators to increment or decrement a residue ID by some number of
residues. For instance,

constrainToGround A 130A+2
constrainToGround A 130A-1

will constrain residues two residues to the C-terminus and one residue to the N-terminus of
32B. Do not insert any spaces between the +/- operators and either of their arguments. You
can use the +/- operators with any command that takes residue numbers as an argument. You
can also use user variables (which begin with “@,” explained elsewhere in this document).



12 BIOPOLYMERS AND MONOATOMS

2.2 Clarifying arithmetic operations on residue numbers

Let’s clarify the +/- operators for residue numbers a little more. In the context of residue
numbers, the leftmost term in such an expression MUST be a real residue number that exists
in the biopolymer. The remaining terms are strictly integers which will be summed to
determine the increment/decrement along the sequence to be applied to the residue number.
For example, assume the first residue number is 129. Then this is OK:

@myRes 130
mobilizer Rigid A @myRes+l @myRes+1+1
mobilizer Rigid A @myRes+l @myRes+2-1

The expressions evaluate as:

@myRes+1 : If the residue that follows 130 in chain A is 130A, it will return 130A. This
is not an integer sum. Note that residue 130 MUST exist, or an error will be tripped.
@myRes+1+1 : This will first sum all terms except the leftmost, strictly arithmetically, and
get 1+1 =2. If the residue that follows 130A is 130B, then it will take the residue number
130, go 2 places towards the end terminus, and return 130B.

@myRes+2-1 : This will return 130A in this example.

This is NOT OK :

mobilizer Rigid A 1+@myRes 1+1+@myRes

1+@myRes : MMB will look for aresidue 1 .. and not find it (in this example the
biopolymer begins at residue 129. It will then throw an error. MMB will NOT conclude that
you are looking for 131, even if 131 does exist on chain A.

As mentioned earlier, insertion codes are OK:

130A+1  :is OK, and will return whatever the next residue actually is in the biopolymer,
in this example 130B.

130A+@myRes : is OK, if there are indeed at least 130 residues following 130A. if the

portion of the biopolymer after 130A is shorter than this, then it will throw an error.

1+125A:is NOT OK, even if residue 1 exists. Because 125A is not an integer. Anything
terms other than the first must be integers.

Note that for commands that do NOT expect a residue number, arithmetic operators,
numbers, and user variables can be in any order.

2.3 monoAtoms



Biopolymers and 13
monoAtoms

The monoAtoms command specifies single atoms (e.g. monatomic ions) The syntax
follows:

monoAtoms <chain ID> <first residue #> <# of atoms> <name of
atom>

Currently only the following atom names are supported:
Mg+2, Cl-, Na+, K+, Li+, Ca+2, Cs+, Rb+

The single atoms created with this command support the atomSpring, atomTether,
springToGround, and constrainToGround commands, just like the biopolymers.
They do not support the mobilizer command. The constraint command works with
monoAtoms to some degree. monoAtoms are automatically added to the physics zone.

You can read the positions of monoAtoms from your input PDB file. You have to be careful
with atom and residue names in that file though. For example, for a magnesium ion, the
atom name should be “Mg+2”, while the residue name should be “MG”. Note that this is
different from the PDB convention, in which both atom and residue name are “MG”.

2.4 Water droplets

The waterDroplet command puts a water droplet of a specified <droplet
chainID> and <radius> about the point <X> <Y> <Z>. There are tethers (with
optional parameter [ tether strength]) which constrain the water to a distance of 1.1
* <radius> about <X> <Y> <Z>. The syntax is:

waterDroplet <droplet chainID> <X> <Y> <Z> <radius>
[tether strength]

Alternatively, you can provide a biopolymer (protein, RNA, or DNA) chain ID and residue
number, and the water droplet will be centered about that residue:

waterDropletAboutResidue <biopolymer chain ID>
<biopolymer Residue Number> <radius> <tether strength>
<water droplet chain ID>



14 A WORD ABOUT UNITS

3 A word about units

I am making a special, very short chapter on units. In MMB 2.10 and earlier, some forces
such as atomSpring, springToGround, atomTether, etc. took A as the unit for dead lengths
and ground locations. For consistency, we are going back to nm for the length unit. This is
because internally all the math is done in nm, kJ/mol, ps, and daltons (g/mol). This implies
that spring constants are in kJ/mol/nm?. For example, if you want to make a spring which in
Amber99 units (A, kcal/mol, ps) would be 310 kcal/mol/A?, the equivalent spring in our
choice of units would be 129790.8 kJ/mol/nm?.

Please note that if you have any dead lengths or ground locations in your MMB 2.10 or
earlier script which you are using with MMB 2.11, you will need to manually change them
from A to nm.

4 Forces

In this Appendix, we describe options for using the baseInteraction, aromatic
two-residue forces, the atomSpring, atomTether, and springToGround
forces, and the contact steric forces. Note that since forces are additive, there is no
hard limit on how many forces can exist in the system or even acting on a single residue,
base, or atom.

4.1 baselnteraction
The syntax for this command is:

baseInteraction <chain identifier for first residue>



Forces

<residue number for first residue>
<interacting edge for first residue>
<chain identifier for second residue>
<residue number for second residue>
<interacting edge for second residue>
<glycosidic bond orientation>

The following combinations of first base pairing edge, second base pairing edge, and
glycosidic bond orientation are permitted:

WatsonCrick
WatsonCrick

WatsonCrick
WatsonCrick

WatsonCrick
WatsonCrick

Hoogsteen
Hoogsteen

Hoogsteen
Hoogsteen

SugarEdge
SugarEdge

Hoogsteen
Hoogsteen

SugarEdge
SugarEdge

SugarEdge
SugarEdge

WatsonCrick Cis
WatsonCrick Trans

Hoogsteen Cis
Hoogsteen Trans

SugarEdge Cis
SugarEdge Trans

Cis
Trans
Cis
Trans
Cis
Trans

WatsonCrick Bifurcated Cis

Stacking3 Stacking5 Cis

Stacking5 Stacking5 Trans

Stacking3 Stacking3 Trans
HelicalStackingA3 HelicalStackingA5 Cis
Superimpose Superimpose Cis

You might notice that some of these are actually not in the Leontis and Westhof
classification. These are explained below:
e Stacking® simply specifies a stacking interaction between consecutive residues on a
chain. The numbers indicate which face is interacting on each base. For example:
baseInteraction A 120 Stacking3 A 121 Stacking5 Cis

Means that the face of base 120 which would ordinarily point towards the 3’ end of
the strand in a helix, will be stacked on the face of base 121 which would ordinarily
point to the 5” end of the helix.

e HelicalStacking* works the same as Stacking, but adds the offset appropriate for
consecutive bases in a helix. HelicalStackingA3/HelicalStackingAS is automatically

15



16 FORCES

applied to all consecutive bases in helices, unless you specify
setHelicalStacking FALSE. MMB assumes an A-form helix exists
whenever it finds three consecutively numbered RNA residues on a single strand
Watson-Crick base paired with three consecutively numbered residues on the same or
another single RNA strand. If you want to generate a helix where this is not the case,
you should manually apply HelicalStackingA3 / HelicalStackingAS interactions.

4.2 nucleicAcidDuplex

This command generates WatsonCrick/WatsonCrick/Cis interactions between two specified
segments on the same or different RNA chains. It is a shortcut for manually specifying each
such interaction for every pair of canonically interacting residues in the duplex. The syntax
is:
nucleicAcidDuplex <chain identifier A>

<first residue on A>

<last residue on A>

<chain identifier B>

<first residue on B>

<last residue on B>

Recalling that the duplex is antiparallel, we require that:
(first residue on A) < (last residue on A)
and

(first residue on B) > (last residue on B)

For example:
nucleicAcidDuplex A 1 3 A 10 8
Makes the segments between residues 1 and 3 (inclusive) and between 10 and 8 (inclusive)

into two halves of a duplex, by applying a base pairing interaction between 1 and 10, 2 and 9,
and 3 and 8.

4.3 NtC

This command is new to 17.8. Previously, we would use baselnteraction’s to impose the bse
stacking geometry in double helices. These we would even impose automatically whenever
three consecutive Watson-Crick base pairs were detected. Actually you should now turn off
that behavior if you want to use NtC’s:

setHelicalStacking False



17
Forces

WatsonCrick/WatsonCrick/Cis interactions between two specified segments on the same or
different RNA chains. It is a shortcut for manually specifying each such interaction for every
pair of canonically interacting residues in the duplex. The syntax is:
NtC <chain identifier>

<first residue number>

<second residue number, almost always the

next consecutive residue>
<NtC class>
<force constant>

For example to force the consecutive residues 1 and 2, on chain D, into A-form helical
stacking, with force constant 1.5, we would issue:

NtC D 1 2 AAQ00 1.5
As a side note, the force constant 1.5 for NtCs, and forceMultiplier of about 200 for
the baselnteraction’s, seem to be a pretty good combination for many purposes.

4.4 Units

Before we describe the various variants of user-applied springs, let’s clarify the units. MMB
and molmodel use nm, kJ/mol, ps, and daltons (a.k.a. atomic mass units = u, or g/mol). The
Amber99 force field, on the other hand, uses nm, kcal/mol, and ps, and u. The user

4.5 atomSpring

The atomSpring command creates a linear spring connecting two atoms. Two optional
parameters (square braces []) specify the dead length and spring force constant.

atomSpring <first chain ID>
<first residue number>
<first atom name>
<second chain ID>
<second residue number>
<second atom name>
[<dead length>
[<spring constant>]]

4.6 atomTether

The atomTether command, as the name implies, applies no force if the distance between
atoms is less than a certain <dead length>, and applies an attractive force with
Hookean <spring constant> when the distance exceeds the former. Default values
for the last two parameters are 0.0 and 3.0, respectively, as they are for atomSpring.



18 FORCES

Make <spring constant> large for a strict “dog leash” or small for a permissive
restraint.

atomTether <first chain ID>
<first residue number>
<first atom name>
<second chain ID>
<second residue number>
<second atom name>
[<dead length>
[<spring constant>]]

4.7 springToGround

The springToGround command creates a linear spring connecting a specified atom and a
specified location in Ground. Two optional parameters (square braces []) specify the dead
length and spring force constant.

springToGround <atom chain ID>
<atom residue number>
<atom name>
<X location in Ground>
<Y location in Ground>
<Z location in Ground>
[<dead length> [<force constant>]]

4.8 alignmentForces

The alignmentForces keyword supports a series of parameters and commands, and
supersedes the old threading and gappedThreading commands. Like those
commands, it applies cross-strand springs connecting like-named atoms in sequence-aligned
residues. By default it does not require an alignment; instead it figures out a global alignment
for you using a dynamic programming algorithm and the BLOSUMG62 substitution matrix
(thanks Segan!). This command should work with any biopolymer type.

Parameters within alignmentForces apply to any alignmentForces commands
following that parameter. They do not apply to any commands that appear above it in the
input file. So it is a good habit to specify all parameters first, then start with the commands.
This parameter says that you want an ungapped alignment:

alignmentForces noGap

It is implemented as a prohibitively high gap penalty for the alignment, which is always a
gapped alignment. In any event, if you want to later re-enable gapped alignments, issue:

alignmentForces gapped



19
Forces

A cool new feature that comes with alignmentForces is one which allows you to set the
dead lengths of the springs not to zero as before, but to some specified fraction of their initial
lengths. Issue:

alignmentForces deadLengthFraction <fraction>

.. where if <fraction> in the interval (0,1], the springs will be set to <fraction> *
(initial length). By default, <fraction> is zero, exactly like the old behavior.
If you want to return to that behavior, explicitly set this to zero.

The spring constant is now set separately from the actual alignment command:
alignmentForces forceConstant <force constant>

.. where if <force constant> should be > 0.0. The units of the force constant are
kJ/(mol-nm"?2).

The only behavior which has been lost in alignmentForces is the old backbone-only
threading, but I can reinstate it upon request.

You can specify the stretches of residues to be aligned (e.g. if you want to align based on a
certain domain). Actually I strongly recommend doing this, because it is easy to get a slightly
(or terribly) incorrect local alignment when doing a global alignment based on the full length
sequence — Bioinformatics 101! On the other hand if you tell it the boundaries of regions
you know to be aligned, you will probably agree with the resulting global alignment.
Anyway, it works like this:

alignmentForces <chain 1 ID>
<start residue 1>
<end residue 1>
<chain 2 ID>
<start residue 2>
<end residue 2>

On the other hand, if you trust SeqAn to do a global alignment, just give it the chain IDs:

alignmentForces <chain 1 ID>
<chain 2 ID>

You should always inspect the alignment. Search for “SegAn sequence alignment
follows:” in the (admittedly) verbose output. You may see something like this:

--PGVGCVPAAEHRLREEILAK



20 FORCES

DYDAIPWLONVEPNLRPKLL--

1313

..where “-*“ are deletions, and “|”” are perfect matches. Both matches and mismatches will get
atomSpring’s. Indels of course will not.

‘6|7’

4.9 contact

You can also apply space-filling Contact spheres to a range of residues using the contact
command. (The idea is similar to that of the parameters addSelectedAtoms and
addAllHeavyAtomSterics)

contact <contact type>
<chain identifier>
<residue number for first residue>
<residue number for last residue>

The first residue should be lower numbered than the second, and both residues should be on
the same chain. You can also issue:

contact <contact type>
<chain identifier>

And the contact spheres will be applied to every residue on the specified chain.

There are two kinds of permitted values of contact type. In the fixed type, the atom
identities are hard-coded and can’t be modified by the user, but the contact sphere radii and
stiffness (both of which are the same for all atoms regardless of atom name) correspond to
the excludedVolumeRadius and excludedVolumeStiffness parameters which
are set in the MMB input file (e.g. commands.dat). These include:

AllAtomSterics : Puts one sphere on each atom of the chain, except for
the end caps on proteins (when used).

AllHeavyAtomSterics : Puts one sphere on each atom of the chain EXCEPT
hydroges, and again except for the end caps on proteins.

RNABackboneSterics : Puts one sphere on each of the following atoms: P,
O5*, C5*, C4*, C3*, and O3*. An error will result from attempting to apply this to proteins,
as anytime when you attempt to put sterics on an atom which doesn’t exist on a given
residue.

The second type of sterics are user configurable, in the parameter file (e.g. parameters.csv).
Here the user can choose on which atoms to put the spheres, with a maximum of four atoms.
The radii and stiffness can be controlled separately for each atom name. A different choice
of zero to four atom names can be chosen for each residue type (4 residue types for RNA, 20
for protein). The user can add as many steric schemes to the parameter file as he/she wishes;
as supplied the parameters.csv file has two: SelectedAtoms and



21
Forces

ProteinBackboneSterics. For the first one, the parameters look like:

RECORD A SelectedAtoms SelectedAtoms X P C4* N9
RECORD C SelectedAtoms SelectedAtoms X P C4* N1
RECORD G SelectedAtoms SelectedAtoms X P C4* N9
RECORD U SelectedAtoms SelectedAtoms X P C4* N1

The second column is the residue type, and columns 7,8, and 9 are the atom names. Note
that the glycosidic nitrogen is named differently for purines vs. pyrimidines. Subsequent
columns give the sphere radii, stiffnesses, and information to identify these as contact
parameter entries. Parameters become available for use immediately upon being entered
in the parameter file, much as for MD force field parameter files.

It is also possible to apply a specified steric scheme to all residues within a certain distance
of a specified residue. The distance is measured by between nearest atoms spanning the two
residues. The syntax is:

applyContactsWithin <radius (nm)> <contact scheme> <chain>
<residue>

4.10 Restraining to ground

Much as residues can be constrained to each other (see next chapter), any residue of any
chain can also be restrained to ground, meaning that a force can be applied to pull all six
translational-rotational degrees of freedom to an equilibrium position and orientation in
Ground:

restrainToGround <chain ID> <residue number>

Keep in mind that unlike a constraint, a restraint acts as a spring and thus allows some
displacement with respect to ground. Any displacement at the end of a stage is carried over
to the next stage, potentially leading to a “creeping” effect. Two parameters which are
relevant to this command are restrainingForceConstant and
restrainingTorqueConstant. These set the translational and angular restitution
force constants.

4.11 Density based force field

As explained in the tutorial, MMB’s density based force field is formulated following Klaus
Schulten’s MDEFF as follows:



22  FORCES

Where i is the atom index, m; is the mass of atom i, is the electronic density at the
nuclear position of atom 7, A is a user-adjusted scaling factor, and  is the gradient operator.
Accordingly, is the density-derived force vector applied to atom i. This is computed for
and applied to every atom i in the system.

To turn on the density based force field on or off, you just need to specify which chains you
want to be subjected to such forces. For instance:

fitToDensity

Specifes that all chains in the system should be fitted to the map. If you only want certain
chains to be fitted, with the remaining chains not subjected to these forces, just specify each
chain to be fitted like this:

fitToDensity <chain ID>

Lastly, if you only want certain stretches of residues to be fitted, you can issue:

fitToDensity <chain ID> <start residue> <end residue>

.. and only the residues starting at <start residue> and ending at <end residue>
of chain <chain ID> will be fitted.

Your density map must be in XPLOR, OpenDX or Situs format. To specify the location of
the density map, file, use:

densityFileName <density file name>

The scaling factor (A in the equation above) defaults to unity, but you can set it to any
floating point number (including negative numbers) as follows:

densityForceConstant <scale factor>

In nucleic acid density maps generated by CryoEM, very often the phophates are not visible
because of their negative charge. Trying to fit these leads the phosphates (which have high
atomic numbers) being fitted to densities they don’t belong to. You can leave out the
phosphates (P, O5’, O3’, OP1, and OP2) from the fitting procedure by setting
densityFitPhosphates to false (or 0):

densityFitPhosphates <bool>

Note that this will slow down your run A LOT. Slowdown is linear with number of nucleic
acid residues with density forces active. We will work on making it work faster.

Another recent (2019) addition is noise. If you use synthetic density maps, e.g. for
benchmarking new fitting methods, you may note that there is a dearth of plug and play



23
Forces

programs for adding noise. The literature is quite clear that white noise won’t cut it — you
need correlated noise. I provide a feature to add noise, inspired by Planck’s Law for
blackbody radiation. I reason that noise is thermal and both photons and phonons are bosons,
so Bose-Einstein statistics apply. The unit cell is taken as an oven, with the lowest-frequency
mode having a half-wavelength equal to the cell dimension in that direction, and the highest-
frequency mode being set by the Nyquist frequency. This is admittedly rather hand-wavy
thinking. For one thing it completely ignores the macromolecular structure which should be
quite a noise generator of its own. Anyway, with time we will see how it compares with real
noise. The important thing for now is it gives you a parameter — temperature — which lets you
adjust the frequency distribution of the noise in an intuitive way. Low temperatures
emphasize blobby low-frequency noise, high temperatures give more fuzzy high-frequency
noise. Continuing the hand-waving, I set the speed of light ¢ , the Boltzmann constant kg,
and Planck’s constant /4, to unity. Then in Planck’s law I divide through by Av, getting the
number density:

N=1/(""-1)

To generate the noise MMB sums over all of the frequency components, scaled by N(v, 7).
This gives noise amplitude. After the sum, we square the amplitude at each grid point to get
intensity. The intensity is then summed to the density. I reason density is more of an intensity

than an amplitude. Following that argument, it would have been better to sum the noise and
density amplitudes before squaring, but of course we don’t have the density amplitude.

The temperature is set by the user as:

densityNoiseTemperature <double, defaults to 0.0>
There is also an overall scale factor:

densityNoiseScale <double, defaults to 0.0>

If this is set to zero (or close to zero) then noise generation is turned off. In our manuscript
we mostly set to around 0.1. The signal-to-noise ratio is another important quantity.

density

SNR =%y

noise

Where x,y,z sum over all grid points and density and noise are both intensites. To get this
quantity, just search for “signalToNoiseRatio” in the admittedly-verbose stdout. Once
the stage is done you should find the following density maps in your working directory:

noise.xplor
density.xplor
noisyMap.xplor

These are separate maps of the noise, the “clean” density (which should be identical to what
was read from the input densityFileName, and the density + noise.



24 FORCES

Note that when we summed over all frequencies that went almost like nx*ny*nz. Then we do
that over all grid points so in the end the complexity is (nx*ny*nz)?. So this can be veeery
slow for maps of nontrivial size. Thus it is a good idea to save noisyMap.xplor for later
use, rather than generating new noise every time.

Lastly, you can choose to compute the autocorrelation function along the Z-axis, for the
noise and the noiseless input density. To turn that on, just set this to True:

densityNoiseComputeAutocorrelation <bool, defaults to 0>
The autocorrelation gets written to the terminal, just search for
“densityAutocorrelation.” Here I show a plot from our (currently) in-prep

manuscript (Emanuel Peter et al., 2019). It shows the density autocorrelation for a density
map simulated at SA from 204f.pdb, and also for the noise at temperatures of 1 and 10.

= quadruplex density

—_ T — — noise, Tp=1
%) N .
= \ <~ | '\ 0 === noise, Tp=10
S N
> AN
-
8 \
=} N\
o N
H N
~ N
c N
o ~
© ~
g o>
= e e emsseemmeemaaa-semmm e
o B R [P M
c T e = ——-—-—
o
S
2
[1]
0 5 10 15 20 25 30

Z-axis distance (A)
4.12 Electrostatic Density force-field

On the same idea as the Density Map fitting, you can provide MMB with an Electrostatic
Potential grid, typically from APBS. The residues you select for fitting will then be driven
into the map according to the partial charges of the atoms. Negative ones will tend to go in
positive volumes and positive ones to negative volumes.

As MMB use Amber to determine the atoms charges, it is strongly recommended to use an
electrostatic map computed with an Amber force field.

The usage is exactly the same as described for £itToDensity with the following
commands:

fitElectroDensity

electroDensityFileName

electroDensityForceConstant



25
Forces

4.13 Physics where you want it

Physics where you want it, introduced in release 2.4, allows you to turn on the all-atoms
force field only for certain regions of your system, referred to as the physics zone.

To specify a range of residues to be added to the physics zone, use:

includeResidues <chain ID> <first residue in range> <last
residue in range>

Sometimes it will be convenient to include all residues within a certain radius of a specified
residue. For this you would use:

includeAllResiduesWithin <distance> <chain ID> <residue
number>

Note that includeResiduesWithin is an alias for
includeAllResiduesWithin . The distance (in A) is measured between key
atoms, CA for protein and C4* for RNA and DNA.

You can also simply set physicsRadius to a value > 0. If this is set, all residues within
physicsRadius of the “flexible”atoms will be included in the physics zone. “Flexible”
atoms are defined as atoms belonging to a mobilized body of mass < 40. This is technically a
parameter rather than a command, so is listed in that section separately. The syntax is just:

physicsRadius <radius>

Default behavior is for all atoms to be subjected to the non-bonded force field terms. If that
is what you want, just don’t specify either of the above commands.

You can create physics zones at all interfaces between atoms belonging to different
mobilized bodies. For example, if you have a domain hinge bending protein, with the hinge
flexible, it would add the hinge plus residues at the domain-domain interface to the physics
zone. something to watch out for, is that a discontinuous domain would get its inter-fragment
interface added to the physics zone. Syntax is:
includeIntraChainInterfaceResidues <chain> <depth>

Where <chain> is the biopolymer chain ID in question, and <depth> is the greatest atom-
atom distance, with atoms of different mobilized body index, that will lead to those atoms
being included in the physics zone.

You can also add specified inter-chain interfaces to the physics zone. In the most general
polymorphism, you can specify the interface between one chain or set of chains, and another
chain or set of chains:



26 FORCES

physicsInterfaces <depth (nm)> <chain 1> [<chain 2>
[<chain 3> [ ...etc]]] Versus <chain 1> [<chain 2> [<chain 3>
[ ...etc]]]

.. You can call this command to get an informative message about the other polymorphisms.

Lastly, we have found that small chemical groups such as methyl or alcohol can spin out of
control in the absence of viscous forces, leading to small time steps and excessive
computational expense. To deal with this, you can scale the inertia of such small groups
with:

smallGroupInertiaMultiplier <inertia scale factor>

Any nonnegative floating point number can be used here; we suggest 11.0.

4.14 Potential rescaling with the “Scrubber”

In Flores and Altman (RNA 2010) we found that kinetic trapping occurs often in
computational RNA folding, as it does experimentally. To get out of these traps we created
the scrubber. Potential rescaling refers to cyclically varying forces. In MMB, we use a
rectangular waveform. For a fraction of the time (1 - dutyCycle) all forces (including
baselnteraction’s, sterics, Amber99 force field, springToGround’s, etc.) will be turned off.
Then for the remainder of the period (dutyCycle) these forces will be turned back on.
The length of the period is set with the scrubberPeriod parameter (in ps, as always).

dutyCycle <”on” fraction>
scrubberPeriod <potential rescaling period, in ps>

This is used in some of the MMB tutorial examples.
4.15 addRingClosingBond

This add a ring closing bond. It only creates bonds between atoms in the same chain. Use it
like this:

addRingClosingBond <chainID> <residueIDl> <atomNamel>
<bondCenterNamel> <residueID2> <atomName2> <bondCenterName2>

bondCenter’s are named as e.g. bond1l, bond2, .. bondN. For example, in a
disulphide bridge (bonding atoms SG), you need to specify bond1l, since bondl is
bonding to CB.



Mobilizers and 27
constraints

5 Mobilizers and constraints

In this Appendix we describe mobilizer commands, which define or modify the internal
coordinate topology of the molecule as well as constraint commands, which add
constraint equations that reduce the degrees of freedom of the system.

It is important to keep in mind the crucial difference between these two in Internal
Coordinate Mechanics. A mobilizer command can reduce or increase the number of
bodies that exist in a system; in the former case you will always save computer time. On the
other hand a constraint command adds constraint equations which must then be solved;
while the net effect depends on masses and forces, computational cost typically increases.
Mobilizers control bond mobilities, which here can be Free, Torsion, or Rigid.
Free means that the bond can change its length, angle, and dihedral.

Torsion means it can change only its dihedral angle.

Rigid means it has no degrees of freedom.

One must also avoid overconstraining the system. For example, if two rigid molecules are
already Weld’ed (see below) to each other, do not put additional constraints on this pair of



28 MOBILIZERS AND CONSTRAINTS

molecules, even if they are nominally applied to different residues. While this is easy to keep
track of for two bodies, watch out for more insidious ways of overconstraining. For example,
if AisWeld’ed to B, and B is Weld’ed to C, do not then Weld C to A.

5.1 mobilizer

The mobilizer keyword is used for specifying the bond mobilities for a stretch of
residues. This command is overloaded. The first variant has the following syntax:

mobilizer <bond mobility>
<chain identifier>
<first residue number>
<last residue number>

The first residue should be lower numbered than the second, and both residues should be on
the same chain. Bond mobility can be set to Free, Torsion, Rigid, or Default.
The “Default” bond mobility is special, as we’ll explain in a moment. Don’t forget you
can use the keywords FirstResidue or LastResidue, or do arithmetic on the residue
numbers using the “+” operator, as described earlier.

You can also simply say:
mobilizer <bond mobility>
<chain identifier>

... and this will set ALL residues in chain <chain identifier> to <bond
mobility>.

Lastly, you can say:
mobilizer <bond mobility>

... and this will set all residues in ALL chains to <bond mobility>.

5.2 applyMobilizersWithin

The applyMobilizersWithin command is used to specifying the bond mobilities for
all biopolymer residues within a certain radius of a specified residue. It has the following
syntax:

applyMobilizersWithin <bond mobility>
<radius>
<chain identifier>
<residue ID>



Mobilizers and 29
constraints

The radius is measured between nearest atoms spanning the two residues and (like always)
in A. The acceptable values of <bond mobility> are as listed above.

5.3 mobilizelnterfaces

The mobilizeInterfaces command is used to specifying the bond mobilities for all
biopolymer residues within a certain distance of all interfaces of a given biopolymer chain or
chains. The syntax is:

mobilizeInterfaces <interface depth>
<bond mobility>
<chain 1> [<chain 2> [<chain 3> [..etc]]]

The <interface depth> is measured as the minimum distance between atoms on
different chains across an interface. Note that this counts over al// atoms, not just the Ca or
C3*. We are now using OpenMM’s neighborlisting for this, which is pretty economical even
if you aren’t set up to use the GPU. <bond mobility> is that desired at the interface —
Rigid, Torsion, Free, orDefault. <chain 1,2, etc> isthe list of chains
forming a complex, whose interfaces with the rest of the system you are interested in. For
example, say you have a complex of chains A, B, and E. If you issue:

mobilizeInterfaces 0.6 Default A B

Then all residues at the interface between the complex AB, and chain E, to a depth of 0.6 nm,
will get bond mobility Default. Note that this will do nothing in particular to the
interface between A and B! In this case you could just as easily have issued:

mobilizeInterfaces 0.6 Default E
If you like to be explicit (a good habit, by the way), you can use the alternate syntax:

mobilizeInterfaces <interface depth>
<bond mobility>
<chain 1> [<chain 2> [<chain 3> [..etc]]]
Versus
<chain I> [<chain II> [<chain III>
[..etc]]]

This sets the bond mobility to <bond mobility>, to a depth of interface depth>,
for the interface between the set of chains (1,2,3..) and the chains (LILIIL.). In our example,
you would issue:

mobilizeInterfaces 0.6 Default A B Versus E

5.4 singleBondMobility



30  MOBILIZERS AND CONSTRAINTS

The singleBondMobility command is used for specifying the bond mobility for a
single bond:

singleBondMobility <chain identifier for first atom>
<residue number for first atom>
<atom name for first atom>
<bond mobility>
<chain identifier for second atom >
<residue number for second atom >
<atom name for second atom>

The two atoms should be covalently bonded to each other, of course.

5.5 psiPhiMobility

psiPhiMobility is used for specifying the bond mobility for the bonds connecting the
N to CA, and the CA to C on the protein backbone, along a given stretch of residues. It is
equivalent to issuing the singleBondMobility command for the two mentioned bonds,
for each residue in the range.

psiPhiMobility <chain ID>
<residue number for first residue in range>
<residue number for last residue in range>
<bond mobility (Free, Torsion, or Rigid)>

You can also skip the residue numbers:
psiPhiMobility <chain ID>
<bond mobility (Free, Torsion, or Rigid)>
.. and this will apply mobilizers to whole chain, from first to last residue. Lastly, you can skip
the chain ID:
psiPhiMobility <bond mobility (Free, Torsion, or Rigid)>
.. and this will apply mobilizers to whole chain, for every protein chain in the system.
psiPhiMobility is simply a shortcut for a bunch of singleBondMobility

commands, and so works in exactly the same way as the latter. This means that it is applied
late — see the section “Order of application of mobilizers.”

5.6 Default mobilizers
It is important to understand what is the default setting for the mobilizers in your system.

The default bond mobility leaves most bonds set to Torsion, but there are also some



Mobilizers and 31
constraints

Rigid bonds, depending on the residue type and atoms it connects. For instance, the bond
mobilities for an RNA residue look like this:

Figure 1 : Default bond mobilities for an RNA residue

Black: Rigid; Red: Torsion; Yellow: Free.

Similarly for a protein residue, most bonds are also Torsion. There are certain bonds and
groups that are set to Rigid:

All peptide bonds (C-N)
All covalent bonds between hydrogens and heavy atoms
Proline N-Ca (This may be changed to Torsion)
Guanidinium group (Arginine CZ-NH1, CZ-NH1, CZ-NE)
Amide groups (Asparagine Cy-N32, Glutamine C3-NE2)
Cyclic groups in Tryptophan, Histidine, Phenylalanine, Tyrosine. EXCEPT that ring closing
bonds are special (nonexistent topologically, subject to bonded MD force field terms):
Tryptophan Cd2-Cy, CZ3-CH2
Histidine, Tyrosine and Phenylalanine C32-Cy
Proline C3-N



32  MOBILIZERS AND CONSTRAINTS

Disulphide bridged cysteines o
el el T Rigid

| CYs
I CYS |
I I
I I
. J
Ring Peptide
bond
(Rigid)
Rigid
fragment

Figure 2 : Bond mobilities for proteins. By default, most bonds have Torsion bond mobility (red). Peptide
bonds are Rigid, as are guanidinium and amide groups. Hydrogens and double-bonded oxygens are also
connected with Rigid bonds. The user can create a ring closing bond which will have Free bond mobility.
Ring closing bonds are special in that they do not topologically connect atoms, only apply bonded forces
(bond stretch, angle bend, dihedral) — recall that closed cycles are not desirable in internal coordinates.
Cyclic groups of Histidine, Tryptophan, Phenylalanine, and Tyrosine (but not Proline) are connected
with Rigid bonds and so form a single body; the ring closing bonds do not change this. Peptide bonds are
Rigid. All of these default bond mobilities can be overridden by the user. For example, the segments on
either end of the chain have here been made Rigid. Lastly, the user can also create a disulphide bridge
between cysteines using a ring closing bond (inset).

5.7 Order of application of mobilizers

In order to get the desired result out of MMB, you should understand the order in which these
commands are applied. They go like this:

1. mobilizer (for Rigid, Free, and Torsion)

2.applyMobilizersWithin (for Rigid, Free, and Torsion)

3.mobilizeInterfaces (for Rigid, Free, and Torsion)

4.mobilizer, applyMobilizersWithin, and mobilizeInterfaces
(for Default)

5.singleBondMobility (incl. psiPhiMobility)

A common mistake is to forget that before any commands are applied, all chains have a
default bond mobility, as described above. Note also that the “Default” bond mobility
isn’t actively applied to residues — instead when you specify this, all other modifications to
the residue bond mobility are removed, so it is simply never changed from its original bond



constraints

mobility.

Mobilizers and 33

Here is a simple example:

protein A 1 AAAAAA
mobilizer Rigid A 1 6
mobilizer Default A 3 4

Results in two Rigid stretches (1 to 2 and 5 to 6) — the output looks something like this:

/Users/Sam/svn/RNAToolbox/trunk/src/MobilizerContainer.cpp:44
Mobilizer stretch 0 BondMobility = Rigid
/Users/Sam/svn/RNAToolbox/trunk/src/MobilizerContainer.cpp:45
chain= A from residue 1 to 2
/Users/Sam/svn/RNAToolbox/trunk/src/MobilizerContainer.cpp:44
Mobilizer stretch 1 BondMobility = Rigid
/Users/Sam/svn/RNAToolbox/trunk/src/MobilizerContainer.cpp:45
chain= A from residue 5 to 6

5.8 constraint

The constraint command is used for specifying constraints to weld residues or

monoAtoms together:
constraint

<chain identifier for first residue>
<residue number for first residue>
Weld

<chain identifier for second residue>
<residue number for second residue>

The two welded residues can be on different chains; in fact either or both residues can be in
RNA or protein chains. The weld is applied on C3* atoms of RNA residues and on C atom s
of protein residues. There is no preference for residue number ordering.

You can also specify which atoms you want welded, as follows:

constraint

<first atom chain identifier>
<first atom residue>

<first atom name>

Weld

<second atom chain identifier>
<second atom residue number>
<second atom name>

Lastly, you can weld to ground, either specifying the atom to be welded or using the default:



34  MOBILIZERS AND CONSTRAINTS

constraint <chain identifier>
<residue number >
<atom name>
Weld Ground

or:

constraint <chain identifier>
<residue number >

Weld Ground

This syntax treats monoAtoms and biopolymer atoms on an equal footing, except that in the
case of monoAtoms you cannot avoid providing the atom name.

5.9 Constraining to ground
Just as residues can be constrained to each other, any residue of any chain can also be
constrained (rigidly attached) to ground:

constrainToGround <chain ID> <residue number>

See Appendix: Parameters for an explanation of the constraintTolerance parameter,
relevant to this command.

Much more efficient are a couple of variants of this command. For example:
constrainToGround

(with no parameters) attaches each chain to ground using a Weld rather than a Free
mobilizer. Thus rather than granting 6 DOFs and then removing them with constrain
equations, the DOFs never exist to begin with.

Similiarly, you can choose the mobilizer type (Free vs. Weld) for all chains by issuing:
rootMobilizer <"Free" | "Weld">

Or, you can choose the mobilizer type for a specific chain by issuing:
rootMobilizer <Chain> <"Free" | "Weld">

5.10 Constraining rigid segments to each other or to ground

In the antibody design example (see Tutorial), we have a protein which has two rigid

segments and one flexible segment. To prevent the two rigid segments from moving with
respect to ground, we welded them to ground. Alternatively, maybe we could have welded



Mobilizers and 35
constraints

the rigid segments to each other, so the protein as a whole could move with respect to its
binding partner (or ground, for that matter). Sometimes you may want a chain to have many
rigid segments, all welded either to ground or to a specified residue. MMB has a convenient
command for this.

If you want to weld all rigid segments of all chains to ground, just issue:
constrainChainRigidSegments

If you want to weld the rigid segments of a specified chain to ground, issue:
constrainChainRigidSegments <chain ID> Ground

where <chain ID> refers to the chain in question.

Lastly, if you want to weld the rigid segments of a specified chain to a specified residue (on
the same chain), issue:

constrainChainRigidSegments <chain ID> <residue ID>

In this latter case, all the rigid segments in chain <chain ID> will be welded to the same
residue <residue ID>. This means that the rigid segments will move together, allowing
rigid body motions of the entire chain. If you want several chains to move together, just add
aconstraint command.

5.11 constrainlnterfaces

The constrainInterfaces command is used to apply a Weld constraint across one
or more pairs of biopolymer chains. within a certain distance of all interfaces of a given
biopolymer chain or chains. The syntax is:

mobilizeInterfaces <interface depth>
<chain 1> [<chain 2> [<chain 3> [..etc]]]

The <interface depth> is measured as the minimum distance between atoms on
different chains across an interface. If the minimum distance between the chains is greater
than this, no constraint will be applied. The constraint will be applied to the first pair of
atoms found, which spans the two chains and whose internuclear distance is smaller than
<interface depth>. Note that this counts over all atoms, not just the Ca or C3*. We
are now using OpenMM’s neighborlisting for this, which is pretty economical even if you
aren’t set up to use the GPU. <chain 1,2, etc> is the list of chains forming a
complex, whose interfaces with the rest of the system you are interested in. For example, say
you have a complex of chains A, B, and E. If you issue:

constrainInterfaces 0.6 A B



36  MOBILIZERS AND CONSTRAINTS

Then chains A and B will each separately be constrained to chain E, unless one of the two
former chains is more than 0.6 nm from E, in which case that chain will not be constrained to
E. Note that this will not apply a constraint between A and B! In this case you could just as
easily have issued:

constrainInterfaces 0.6 E
If you like to be explicit (a good habit, by the way), you can use the alternate syntax:

mobilizeInterfaces <interface depth>
<chain 1> [<chain 2> [<chain 3> [..etc]]]
Versus
<chain I> [<chain II> [<chain III>
[..etc]]]

This creates all possible pairwise constraints between <chain 1,2, ..etc>and <chain
I, II..etc> , skipping pairs of chains with minimum separation greater than
<interface depth>. You would get the same result as before if you issue:

constrainInterfaces 0.6 Default A B Versus E

5.12 Coupling protein backbone y and ¢ angles

If you are modeling homomultimers or for some other reason wish to impose symmetric
motion of protein backbones, you can use the following command:

couplePsiPhiAngles <Chain A> <start residue A> <end residue A>
<Chain B> <start residue B> <end residue B>

This forces corresponding residues in chains A and B, over the specified range, to have the
same y and ¢ angles. You need to make sure that the ranges <start residue A>
<end residue A>and <start residue B> <end residue B> have the same
number of residues. However strictly speaking you could get away with these stretches not
having the same sequence, since the coupled-coordinate constraints apply only to the
backbone angles.



Direct structure 37
editing

6 Direct structure editing

In this chapter we talk about editing structure directly, meaning modifying internal or
Cartesian coordinates of structures, adding or removing atoms, etc. For now this chapter is
quite short, other features will be documented soon.

6.1 Initial displacement

This command simply displaces the designated chain by a given Cartesian vector, with
respect to its position in the input structure file:

initialDisplacement <chain> <X> <Y> <Z>

6.2 Imposing protein secondary structure

Have you ever simply wanted to impose a certain secondary structure in a certain region of
your model? Say, make a helix-turn-helix into a single continuous helix? Well, with the new
setPhiPsiAngles command you can do just that. It sets the phi, psi, and peptide
dihedral angles to the defaults for Alpha, ParallelBeta and AntiParallelBeta
secondary structures, overriding whatever values these dihedrals may have taken from the
input structure file. The syntax is:

setPhiPsiAngles <chain ID> <start residue> <end residue> <
Alpha | ParallelBeta | AntiParallelBeta>

These are applied affer structure matching. If the command is issued multiple times, the
dihedral angles are set in the order the commands were issued.

6.3 Introducing a substitution mutation

A common structure editing operation is to substitute one residue type for another. The
syntax is:

substituteResidue <chain> <residue ID> <new residue type>

The residue at position <residue ID> will simply be replaced by one of type <new
residue type>. If you provided an input structure file, MMB will match all the internal
coordinates it can based on identical atom names, and use default values for the remaining
internal coordinates. For example if your mutate alanine to valine, it will match the Ca and
CPB positions, but will choose a position for Cy1 and Cy2 based on default bond lengths,



38  DIRECT STRUCTURE EDITING

angles, and dihedrals. Note that substitutions in general will need to be equilibrated to ensure
reasonable interatomic contacts.

6.4 Introducing an insertion mutation

Another common structure editing operation is to insert a residue. The MMB syntax for this
is:

insertResidue <chain> <residue ID> <inserted residue type>
MMB will simply insert a residue at position <residue ID>. It will figure out the position
respecting the PDB convention of residue numbers being ordered first by residue number,
then by insertion code. You can insert in the middle of the chain, or at either terminus.

6.5 Making a deletion mutation

It’s even simpler to delete a residue. The MMB syntax for this is:

deleteResidue <chain> <residue ID>

MMB will simply delete the residue at position <residue ID>. You can also delete an
entire range, like this:

deleteResidue <chain> <start residue ID> <end residue ID>

.. and MMB delete all residues in the specified range. Lastly, you can delete an entire chain,
like this:

deleteResidue <chain>

6.6 Renumbering residues

The PDB has been referred to as a bioinformatician’s nightmare. There are several reasons
for this, one of which is that structural biologists can be rather liberal in their interpretation of
the residue numbering rules, in particular what insertion codes mean and in what order they
should go. There is also the problem of gaps. Some software packages, such as FoldX, don’t
handle insertion codes very well. So there are many reasons why you may wish to change the
numbers so they start at some integer value and increase consecutively from there. To do

this, simply issue:

renumberBiopolymerResidues

MMB will simply renumber all biopolymer chains to start at 1. Note that any commands
issued in the same stage, that access residue numbers, implicitly or explicitly, will cause
MMB to crash. Sorry. So if you need to renumber, do it in a stage that involves nothing else.
You can do any modeling you wish before and after that stage. Here is an example of me
renumbering 1A22.pdb:

firstStage 2

lastStage 3

readAtStage 2
loadSequencesFromPdb 1A22.pdb



Direct structure 39
editing

renumberBiopolymerResidues

reportingInterval .0000000001

numReportingIntervals 1
readBlockEnd
readAtStage 3

# last.2.pdb will have renumbered residues, which will now
be read by:

loadSequencesFromPdb

# You can issue any commands you want here. Just use the
new residue numbers.
readBlockEnd

An alternative syntax involves calling 1oadSequencesFromPdbAndRenumber. This is
just like 1oadSequencesFromPdb, but it renumbers right after the coordinate matching
step. Unfortunately it is also pretty much incompatible with any residue-specific operations.
Example usage is only slightly different:

firstStage 2
lastStage 3
readAtStage 2
loadSequencesFromPdbAndRenumber 1A22.pdb
reportingInterval .0000000001
numReportingIntervals 1
readBlockEnd
readAtStage 3
# last.2.pdb will have renumbered residues, which will now
be read by:
loadSequencesFromPdb
# You can issue any commands you want here. Just use the
new residue numbers.
readBlockEnd



40  BUILDING ARBITRARY MOLECULES (BETA)

7  Building arbitrary molecules

(beta)

In this chapter we talk about building arbitrary molecules. Here MMB will turn user
commands into molmodel commands. This feature is very much in beta, so you will need
help if you are going to do anything complicated. There exist both known and (almost
certainly) unknown bugs. This capability is in the trunk, but may not be in your distribution.
Contact me if you are using this!

7.1 Example: benzene
This is the approach which is most general, building up the molecule one atom at a time:

# chain ID and arbitrary 3-character residue name:

molecule initialize B RNG

# create a trivalent atom, of element Carbon, name it Cl:
molecule B setBaseAtom TrivalentAtom Cl Carbon

# The TrivalentAtom has bonds named bondl, bond2, and bond3.
Attach the next atom to one of these three (here we chose

bond2) and specify the bond length (.14 nm):
molecule B bondAtom TrivalentAtom C2 Carbon Cl/bond2 .14
# note that in the above, bond2 of Cl is now occupied. It's

also implicit that bondl of C2 is occupied, because that's by
default the bond on the child which is used for attachment.

# now all the other four carbons in the ring:
molecule B bondAtom TrivalentAtom C3 Carbon C2/bond2
molecule B bondAtom TrivalentAtom C4 Carbon C3/bond2
molecule B bondAtom TrivalentAtom C5 Carbon C4/bond2
molecule B bondAtom TrivalentAtom C6 Carbon C5/bond2
# Use the special atom type AliphaticHydrogen here,
another available bond.

molecule B bondAtom

.14
.14
.14
.14
and use

H1

molecule
molecule
molecule
molecule
molecule

# Now for atoms C2,C3,C4,and C5,
(to attach to the preceding atom),

B bondAtom

W W ww

hydrogen),

bondAtom
bondAtom
bondAtom
bondAtom

and bond2

AliphaticHydrogen
AliphaticHydrogen
AliphaticHydrogen
AliphaticHydrogen
AliphaticHydrogen
AliphaticHydrogen

(to attach the succeeding atom) .

H2
H3
H4
H5
H6

we have
bond3

Hydrogen
Hydrogen
Hydrogen
Hydrogen
Hydrogen
Hydrogen

now occupied bondl

Cl/bond3
C2/bond3
C3/bond3
C4/bond3
C5/bond3
C6/bond3

(to attach a

SO no

e e



Building arbitrary molecules 41
(beta)

bonds left on those atoms.
# C1 has bondl still available (because it has no parent
atom). C6 has C2 available, because it has no child atom.

#Find convenient biotypes in your tinker parameter file for
these atoms. In this case we used Phenylalanine CZ, with
Ordinality:Any for the carbons, and Phenylalanine HZ for the

aliphatic hydrogens:

molecule B setBiotypeIndex Cl Phenylalanine CZ Any
molecule B setBiotypeIndex C2 Phenylalanine CZ Any
molecule B setBiotypeIndex C3 Phenylalanine CZ Any
molecule B setBiotypeIndex C4 Phenylalanine CZ Any
molecule B setBiotypeIndex C5 Phenylalanine CZ Any
molecule B setBiotypeIndex C6 Phenylalanine CZ Any
molecule B setBiotypeIndex H1l Phenylalanine HZ Any
molecule B setBiotypeIndex H2 Phenylalanine HZ Any
molecule B setBiotypeIndex H3 Phenylalanine HZ Any
molecule B setBiotypeIndex H4 Phenylalanine HZ Any
molecule B setBiotypeIndex H5 Phenylalanine HZ Any
molecule B setBiotypeIndex H6 Phenylalanine HZ Any
# Now we add a bond to close the ring. Recall the bond

centers that are available on Cl and Cb6:
addRingClosingBond B Cl bondl C6 bond2

7.2 Example: ethane

Here is an example of how to build ethane:

molecule initialize B MTN
molecule B setBaseCompound MethylGroup
molecule B convertInboardBondCenterToOutboard

#molecule B bondAtom AliphaticHydrogen H4 Hydrogen methyl/bond

0.1112

molecule B bondCompound methyl2 MethylGroup MethylGroup/bond
molecule B setBiotypelIndex C MethaneC

molecule B setBiotypelIndex H1 MethaneH

molecule B setBiotypelIndex H2 MethaneH

molecule B setBiotypelIndex H3 MethaneH

molecule B setBiotypeIndex methyl2/C MethaneC

molecule B setBiotypeIndex methyl2/H1 MethaneH

molecule B setBiotypeIndex methyl2/H2 MethaneH

molecule B setBiotypeIndex methyl2/H3 MethaneH

#molecule B setBiotypeIndex H4 MethaneH
molecule B defineAndSetChargedAtomType MethaneC 1 -0.18
molecule B defineAndSetChargedAtomType MethaneH 34 0.06



42  BUILDING ARBITRARY MOLECULES (BETA)

7.3 Example: GDP

Here is an example of how to build GDP:

molecule initialize H G
molecule H setBaseCompound Guanylate
# Add alpha phosphate
molecule H bondAtom QuadrivalentAtom PA Phosphorus

05* /bondl

molecule
molecule
0.14800
molecule
0.14800
molecule
molecule
molecule
2.094
molecule
molecule

H
H

H
H

OPA3/bond?2

molecule
molecule
molecule
molecule
molecule
molecule
molecule

LT T T T T T D

.14

setBiotypeIndex PA Phosphate, ?RNA P Initial
bondAtom UnivalentAtom OPAl Oxygen PA/bond3

bondAtom UnivalentAtom OPA2 Oxygen PA/bond4

setBiotypeIndex OPAl Phosphate, ?RNA OP Initial
setBiotypeIndex OPA2 Phosphate, ?RNA OP Initial
bondAtom BivalentAtom OPA3 Oxygen PA/bond2

.140

setBiotypeIndex OPA3 Phosphate, ?RNA 0O5* Initial
bondAtom QuadrivalentAtom P Phospho

.14

bondAtom UnivalentAtom OP1l Oxygen
bondAtom UnivalentAtom OP2 Oxygen
bondAtom UnivalentAtom OP3 Oxygen
setBiotypeIndex P Phosphate, ?RNA P
setBiotypeIndex OP1l Phosphate, ?RNA
setBiotypeIndex OP2 Phosphate, ?RNA
setBiotypeIndex OP3 Phosphate, ?RNA

7.4 Example: water

rus

P/bond3 0.14800
P/bond4 0.14800
P/bond2 0.14800

Initial

OP Initial
OP Initial
OP Initial

I apologize in advance about how hard it is to make a simple water molecule!

molecule
molecule
molecule
molecule
Free

molecule
molecule
molecule
molecule

initialize H H20
setBaseAtom BivalentAtom OWl Oxygen
bondAtom UnivalentAtom HW1 Hydrogen OW1/bondl
bondAtom UnivalentAtom HW2 Hydrogen OW1/bond?2

H
H
H

T T oo

defineBiotype O 2 TIP3P Oxygen
defineBiotype H 1 TIP3P Hydrogen

setBiotypeIndex OW1l
setBiotypeIndex HW1

TIP3P Oxygen
TIP3P Hydrogen

Any
Any

.14
.14 0



Global 43
parameters

molecule H setBiotypeIndex HW2 TIP3P Hydrogen Any

molecule H defineAndSetChargedAtomType TIP3P Oxygen Any 21 -
0.834

molecule H defineAndSetChargedAtomType TIP3P Hydrogen Any 30
0.417

molecule H setDefaultBondAngle 104.52 HW1 OW1l HWZ2

8 Global parameters

This appendix, describes global parameters available to users. It does not cover commands
such as baseInteraction, aromatic, contact, mobilizer, and
constraint. The simplest difference between a parameter and a command is the
following. A command can be issued an unbounded number of times, subject only to memory
and computer time limitations. The major caveat is that in the case of constraint
commands, one must not overconstrain the system. In contrast a parameter can only be set
once (at least for a given stage); if a parameter is set multiple times for a given stage, only the
last value of that parameter will be used. A listing of all user-configurable global parameters
and their current values is printed at the beginning of every stage of an MMB run. Some
additional parameters are available but rarely used or not recommended; contact the author
with questions on these.

This chapter does not describe staged parameters. These are parameters for which not only
the value, but also the stage at which they first take effect is specified, for example
temperature and dutyCycle.

addAllAtomSterics Bool FALSE  Add steric contact spheres to all atoms. This is more
expensive and more prone to kinetic trapping than
addSelectedAtoms.

addAllHeavyAtomSterics Bool FALSE  Add steric contact spheres to all atoms EXCEPT
hydrogens.

checkSatisfied Bool FALSE At each reporting interval, list all the baselnteraction’s and
determine which were satisfied.

constraintTolerance float 0.05 This determines the tolerance of the Weld constraint. If
Weld’ed pieces are moving relative to each other, reduce
this number.

cutoffRadius float 0.1 This is the range of the MMB potential. See our Multiple-

template homology modeling paper.

densityFileName String Name of file for fitting based on electron density, in .xplor
format. If you need to convert from some other format, we
recommend using mapman (e.g. rave_osx for mac).

Instructions are here:

http://xray.bmc.uu.se/usf/mapman_man.html#S10

densityForceConstant Float 1 Scale factor for the density based forces
firstStage int Stage at which simulation should begin.
globalAmberimproperTorsionS = float 0

caleFactor

—



44 GLOBAL PARAMETERS

globalBondBendScaleFactor
globalBondStretchScaleFactor

globalBondTorsionScaleFactor
globalCoulombScaleFactor
globalGbsaScaleFactor
globalvVdwScaleFactor

initialSeparation

integratorAccuracy
integratorStepSize
integratorType

integratorUseFixedStepSize
lastStage

leontisWesthoflnFileName
loadTinkerParameterFile

numReportinglntervals
alias maxReportingIntervals

nastGlobalBondTorsionScaleF
actor
physicsRadius

randomizelnitialVelocities

reportinglnterval

removeRigidBodyMomentum

rigidifyFormedHelices
scrubberPeriod

safeParameters

float
float

float
float
float
float
float
int

int
string

Bool
int

string
Bool

int

int

Float

Bool

float

Bool

Bool
float

Bool

-
©o

0

20.0

0.001
0.001
Verlet

FALSE
1

./paramet
ers.csv
FALSE

100

10

FALSE

1.0

FALSE

FALSE

TRUE

These eight parameters set scaling factors for terms in the
Amber99 potential. Most default to 0 for economy.

Sets the separation between chains at stage 1, or
whenever readPreviousFrameFile = false.

Integrator tolerance, applies for variable step size time
integrators.

Step size in ps, for fixed step size integrators.
Choose between Verlet, RungeKuttaMerson

self explanatory
Stage at which simulation will end

MMB parameter file

If FALSE, uses hard-wired Tinker parameters. If 1, reads
parameters from tinkerParameterFileName
Number of reporting intervals per stage.

Scale factor for NAST torsional potential

If this is set to a value > 0, all residues within
physicsRadius of any “flexible” atoms will be added to the
physics zone. “flexible” atoms are defined as those
belonging to a mobilized body of mass < 40.

Adds a random velocity to each body at the beginning of
the simulation stage. Note that if you are have any non-
interacting bodies (e.g. free ions with charges turned off)
you may wish to apply initial velocities, otherwise the
Nose-Hoover thermostat will leave them in their zero
kinetic energy state.

Duration of reporting intervals, in ps.

When True, periodically sets overall translational and
rotational momentum to zero.

Duration of one cycle of potential rescaling (ON time +
OFF time) in ps.

When TRUE, checks for syntax errors as well as some
potentially dangerous parameter values.



setForceAndStericScrubber

setHelicalStacking

setTemperature

thermostatType
tinkerParameterFileName

baselnteractionForceMultiplier
alias
twoTransformForceMultiplier
alias forceMultiplier
useFixedStepSize

Bool

Bool

Bool

string
string

float

Bool

FALSE

TRUE

TRUE

100

FALSE

45

No longer user configurable. When dutyCycle < 1.0, this is
automatically set to TRUE. It turns ALL forces (including
baselnteraction’s, sterics, Amber99 force field,
springToGround’s, etc.) off for (dutyCycle -1) fraction of
each scrubberPeriod.

if TRUE, identifies three consecutive
WatsonCrick/WatsonCrick/Cis base pairs as a helix and
applies HelicalStackingA3/HelicalStackingA5/Cis
baselnteraction’s between the consecutive residues on
each strand.

Turns on thermostat.

Choices are NoseHoover and VelocityRescaling

Name of the tinker-formatted parameter file. Only needed
if the tinker force field is turned on.

Scale factor applied to all baselnteraction and aromatic
forces. 100 or 1000 is recommended to speed up
modeling.

Specifies fixed-step-size time integration.



46 MACROS

9 Macros

This appendix describes macros available to users. These macros set parameters on the
user’s behalf. These are provided in cases where the corresponding commands might be
confusing to the user, or simply not under user control.

matchFast This sets matchExact TRUE, matchldealized FALSE,
matchOptimize FALSE, and guessCoordinates FALSE. It
is very economical. It is the default behavior, so usually
there is no need to call this.

matchGapped This sets matchExact TRUE, matchldealized TRUE,
matchOptimize TRUE, and guessCoordinates TRUE. It
guesses positions for any missing atoms. matchFast does
this just fine for side chains, but matchGapped can handle
missing backbone atoms. There may be unphysical bond
geometries at the boundaries between known and missing
backbone atoms, but there are ways to heal this.

setDefaultMDParameters Equivalent to issuing:
globalBondTorsionScaleFactor 1.0
globalAmberimproperTorsionScaleFactor 1.0
globalBondBendScaleFactor 1.0
globalBondStretchScaleFactor 1.0
globalBondTorsionScaleFactor 1.0
globalCoulombScaleFactor 1.0
globalvdwScaleFactor 1.0
globalAmberimproperTorsionScaleFactor 1.0



User defined variables, parameter arithmetic, and conditional 47
blocks

10 User defined variables,
parameter arithmetic, and
conditional blocks

In this Appendix, we describe how to define numerical variables, and various ways to specify
sections of the input file which are to be read or ignored at certain stages.

10.1 Comment marker

The comment marker is #, e.g.:

# Don’t read this, it’s just a comment

10.2 User defined variables

User variables are defined with the following syntax:

@<variable-name> <float or integer value>

The variable @<variable-name> can then be used wherever a literal integer or float is
expected. If a float is assigned to the variable, and the variable is later used where an integer
is expected, MMB will return an error. The definition of the variable should precede its first
use in the input file. For example:

#declare @myStage variable and set to 3

@myIntervals 3

# now use it where a number (in this case an integer) is
expected:

numReportingIntervals @myIntervals

Don’t use any punctuation or whitespace in <variable-name>.
Don’t try to set firstStage or lastStage with a user variable.

10.3 Parameter arithmetic

User variables are pretty handy, and start to make the command file more like a
programming language. In the same vein, MMB allows the ‘+’ and ‘-’ operators. This means
that any integer or floating-point (double-precision) parameter value can be set using a
combination of literals, user variables, and the above operators. There is no limit to the
number of operators and operands. Here are a couple of examples:

@DUMMY 40



48 USER DEFINED VARIABLES, PARAMETER ARITHMETIC, AND CONDITIONAL BLOCKS

numReportingIntervals @DUMMY+10-@DUMMY
@MYFLOAT 0.35
reportingInterval 4+@MYFLOAT-0

This is equivalent, of course, to:

numReportingIntervals 10
reportingInterval 4.35

Don’t use any whitespace or additional punctuation (such as parentheses, commas, etc.) in an
arithmetic expression. Note also that residue ID’s are special (they’re not integers), and their
‘+’ operator follows different rules (see Chapter 2).

10.4 Conditional blocks

In many cases we will want to issue different commands and make different choices of
parameter values at different stages of a job. For this purpose we can enclose a block of the
input file in a conditional block, which is opened as follows:

readFromStage <stage-number> Read only if the current stage is equal to
or GREATER than <stage-number>.

readToStage Read only if the current stage is

equal to or LESS than <stage-number>.

readAtStage Read only if the current stage is EQUAL
to <stage-number>.

readExceptAtStage Read only if the current stage is NOT

EQUAL to <stage-number>.

The commands and parameters to be conditionally read follow, and the end of the block is
indicated with a readBlockEnd statement, e.g.:

# start conditional block:

readAtStage 3

# read the following lines only at stage 3:

sequence C CCUAAGGCAAACGCUAUGG

firstResidueNumber C 146

baseInteraction A 2658 WatsonCrick A 2663 WatsonCrick Cis
contact C 146 SelectedAtoms C 164

# end conditional block:

readBlockEnd

# continue with the rest of the input file



